Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
Adv Drug Deliv Rev. 2013 Nov;65(13-14):1803-15. doi: 10.1016/j.addr.2013.07.011. Epub 2013 Jul 24.
Use of nanoparticles is among the most promising strategies to overcome microbial drug resistance. This review article consists of three parts. The first part discusses the epidemiology of microbial drug resistance. The second part describes mechanisms of drug resistance used by microbes. The third part explains how nanoparticles can overcome this resistance, including the following: Nitric oxide-releasing nanoparticles (NO NPs), chitosan-containing nanoparticles (chitosan NPs), and metal-containing nanoparticles all use multiple mechanisms simultaneously to combat microbes, thereby making development of resistance to these nanoparticles unlikely. Packaging multiple antimicrobial agents within the same nanoparticle also makes development of resistance unlikely. Nanoparticles can overcome existing drug resistance mechanisms, including decreased uptake and increased efflux of drug from the microbial cell, biofilm formation, and intracellular bacteria. Finally, nanoparticles can target antimicrobial agents to the site of infection, so that higher doses of drug are given at the infected site, thereby overcoming resistance.
纳米粒子的使用是克服微生物药物耐药性的最有前途的策略之一。本文综述分为三个部分。第一部分讨论了微生物药物耐药性的流行病学。第二部分描述了微生物耐药性的机制。第三部分解释了纳米粒子如何克服这种耐药性,包括以下几种:释放一氧化氮的纳米粒子(NO NPs)、含壳聚糖的纳米粒子(壳聚糖 NPs)和含金属的纳米粒子都同时使用多种机制来对抗微生物,从而使这些纳米粒子产生耐药性的可能性降低。将多种抗菌剂包装在同一个纳米粒子内也不太可能产生耐药性。纳米粒子可以克服现有的药物耐药机制,包括减少药物摄取和增加药物从微生物细胞中的流出、生物膜形成和细胞内细菌。最后,纳米粒子可以将抗菌剂靶向感染部位,从而在感染部位给予更高剂量的药物,从而克服耐药性。
Adv Drug Deliv Rev. 2013-7-24
ACS Appl Mater Interfaces. 2015-1-13
Nanotechnology. 2010-2-15
Mater Today Bio. 2022-9-6
Colloids Surf B Biointerfaces. 2014-9-1
Mater Today Bio. 2025-7-18
Pharmaceuticals (Basel). 2025-5-30
Mater Today Bio. 2025-5-31
Front Cell Infect Microbiol. 2025-5-27
Mater Today Bio. 2025-4-30