Auckland Bioengineering Institute, The University of Auckland, New Zealand.
Auckland Bioengineering Institute, The University of Auckland, New Zealand; Department of Engineering Science, The University of Auckland, New Zealand.
Neuroimage. 2015 Feb 1;106:101-10. doi: 10.1016/j.neuroimage.2014.11.041. Epub 2014 Nov 24.
The cerebral metabolic rate of oxygen (CMRO2) is an important measure of brain function. Since it is challenging to measure directly, especially dynamically, a number of neuroimaging techniques aim to infer activation-induced changes in CMRO2 from indirect data. Here, we employed a mathematical modelling approach, based on fundamental biophysical principles, to investigate the validity of the widely-used method to calculate CMRO2 from optical measurements of cerebral blood flow and haemoglobin saturation. In model-only simulations and simulations of in vivo data changes in CMRO2 calculated in this way differed substantially from the changes in CMRO2 directly imposed on the model, under both steady state and dynamic conditions. These results suggest that the assumptions underlying the calculation method are not appropriate, and that it is important to take into account, under steady state conditions: 1) the presence of deoxyhaemoglobin in arteriolar vessels; and 2) blood volume changes, especially in veins. Under dynamic conditions, the model predicted that calculated changes in CMRO2 are moderately correlated with the rate of oxygen extraction--not consumption--during the initial phase of stimulation. However, during later phases of stimulation the calculation is dominated by the change in blood flow. Therefore, we propose that a more sophisticated approach is required to estimate CMRO2 changes from these types of data.
大脑氧代谢率(CMRO2)是衡量大脑功能的一个重要指标。由于直接测量 CMRO2 具有挑战性,尤其是动态测量,因此许多神经影像学技术旨在从间接数据中推断出激活引起的 CMRO2 变化。在这里,我们采用了一种基于基本生物物理原理的数学建模方法,来研究从脑血流和血红蛋白饱和度的光学测量中计算 CMRO2 的广泛使用方法的有效性。在仅模型模拟和体内数据模拟中,以这种方式计算的 CMRO2 的变化与直接施加于模型的 CMRO2 的变化在稳态和动态条件下都有很大的不同。这些结果表明,计算方法的假设并不合适,在稳态条件下,需要考虑以下因素:1)动静脉中脱氧血红蛋白的存在;2)血液体积的变化,尤其是静脉中的血液体积变化。在动态条件下,模型预测计算出的 CMRO2 变化与刺激初始阶段的氧气提取率(而非消耗率)中度相关。然而,在刺激的后期阶段,计算主要由血流量的变化决定。因此,我们建议需要采用更复杂的方法来从这些类型的数据中估计 CMRO2 的变化。