Suppr超能文献

具有从动物转化而来的机制的人类神经血管耦合的定量模型。

A quantitative model for human neurovascular coupling with translated mechanisms from animals.

机构信息

Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.

Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.

出版信息

PLoS Comput Biol. 2023 Jan 6;19(1):e1010818. doi: 10.1371/journal.pcbi.1010818. eCollection 2023 Jan.

Abstract

Neurons regulate the activity of blood vessels through the neurovascular coupling (NVC). A detailed understanding of the NVC is critical for understanding data from functional imaging techniques of the brain. Many aspects of the NVC have been studied both experimentally and using mathematical models; various combinations of blood volume and flow, local field potential (LFP), hemoglobin level, blood oxygenation level-dependent response (BOLD), and optogenetics have been measured and modeled in rodents, primates, or humans. However, these data have not been brought together into a unified quantitative model. We now present a mathematical model that describes all such data types and that preserves mechanistic behaviors between experiments. For instance, from modeling of optogenetics and microscopy data in mice, we learn cell-specific contributions; the first rapid dilation in the vascular response is caused by NO-interneurons, the main part of the dilation during longer stimuli is caused by pyramidal neurons, and the post-peak undershoot is caused by NPY-interneurons. These insights are translated and preserved in all subsequent analyses, together with other insights regarding hemoglobin dynamics and the LFP/BOLD-interplay, obtained from other experiments on rodents and primates. The model can predict independent validation-data not used for training. By bringing together data with complementary information from different species, we both understand each dataset better, and have a basis for a new type of integrative analysis of human data.

摘要

神经元通过神经血管耦合(NVC)调节血管活动。详细了解 NVC 对于理解大脑功能成像技术的数据至关重要。NVC 的许多方面已经在实验和数学模型中进行了研究;在啮齿动物、灵长类动物或人类中已经测量和模拟了各种血液体积和流量、局部场电位(LFP)、血红蛋白水平、血氧水平依赖性反应(BOLD)和光遗传学的组合。然而,这些数据尚未整合到一个统一的定量模型中。我们现在提出了一个数学模型,该模型可以描述所有这些数据类型,并保留实验之间的机械行为。例如,通过对小鼠的光遗传学和显微镜数据进行建模,我们了解了细胞特异性的贡献;血管反应的第一个快速扩张是由 NO 中间神经元引起的,在较长刺激期间扩张的主要部分是由锥体神经元引起的,峰后下冲是由 NPY 中间神经元引起的。这些见解在所有后续分析中都得到了转化和保留,同时还保留了其他关于血红蛋白动力学和 LFP/BOLD 相互作用的见解,这些见解是从对啮齿动物和灵长类动物的其他实验中获得的。该模型可以预测未用于训练的独立验证数据。通过将来自不同物种的具有互补信息的数据结合起来,我们不仅更好地理解了每个数据集,而且为对人类数据进行新类型的综合分析奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a69f/9821752/511bb2a16b8b/pcbi.1010818.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验