Kettenbach Arminja N, Sano Hiroyuki, Keller Susanna R, Lienhard Gustav E, Gerber Scott A
Department of Biochemistry, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Norris Cotton Cancer Center, Lebanon, NH 03756, USA.
Department of Biochemistry, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
J Proteomics. 2015 Jan 30;114:48-60. doi: 10.1016/j.jprot.2014.11.001. Epub 2014 Nov 9.
The study of cellular signaling remains a significant challenge for translational and clinical research. In particular, robust and accurate methods for quantitative phosphoproteomics in tissues and tumors represent significant hurdles for such efforts. In the present work, we design, implement and validate a method for single-stage phosphopeptide enrichment and stable isotope chemical tagging, or SPECHT, that enables the use of iTRAQ, TMT and/or reductive dimethyl-labeling strategies to be applied to phosphoproteomics experiments performed on primary tissue. We develop and validate our approach using reductive dimethyl-labeling and HeLa cells in culture, and find these results indistinguishable from data generated from more traditional SILAC-labeled HeLa cells mixed at the cell level. We apply the SPECHT approach to the quantitative analysis of insulin signaling in a murine myotube cell line and muscle tissue, identify known as well as new phosphorylation events, and validate these phosphorylation sites using phospho-specific antibodies. Taken together, our work validates chemical tagging post-single-stage phosphoenrichment as a general strategy for studying cellular signaling in primary tissues.
Through the use of a quantitatively reproducible, proteome-wide phosphopeptide enrichment strategy, we demonstrated the feasibility of post-phosphopeptide purification chemical labeling and tagging as an enabling approach for quantitative phosphoproteomics of primary tissues. Using reductive dimethyl labeling as a generalized chemical tagging strategy, we compared the performance of post-phosphopeptide purification chemical tagging to the well established community standard, SILAC, in insulin-stimulated tissue culture cells. We then extended our method to the analysis of low-dose insulin signaling in murine muscle tissue, and report on the analytical and biological significance of our results.
细胞信号传导的研究仍然是转化医学和临床研究面临的重大挑战。特别是,用于组织和肿瘤中定量磷酸化蛋白质组学的强大而准确的方法是此类研究的重大障碍。在本研究中,我们设计、实施并验证了一种单阶段磷酸肽富集和稳定同位素化学标记方法,即SPECHT,该方法能够将iTRAQ、TMT和/或还原二甲基标记策略应用于在原代组织上进行的磷酸化蛋白质组学实验。我们使用还原二甲基标记和培养的HeLa细胞开发并验证了我们的方法,并发现这些结果与在细胞水平混合的更传统的SILAC标记的HeLa细胞产生的数据无法区分。我们将SPECHT方法应用于小鼠肌管细胞系和肌肉组织中胰岛素信号传导的定量分析,鉴定了已知和新的磷酸化事件,并使用磷酸特异性抗体验证了这些磷酸化位点。综上所述,我们的工作验证了单阶段磷酸富集后的化学标记作为研究原代组织中细胞信号传导的通用策略。
通过使用定量可重复的全蛋白质组磷酸肽富集策略,我们证明了磷酸肽纯化后化学标记和标记作为原代组织定量磷酸化蛋白质组学的一种可行方法的可行性。使用还原二甲基标记作为通用的化学标记策略,我们在胰岛素刺激的组织培养细胞中比较了磷酸肽纯化后化学标记与成熟的社区标准SILAC的性能。然后,我们将我们的方法扩展到小鼠肌肉组织中低剂量胰岛素信号传导的分析,并报告了我们结果的分析和生物学意义。