Liu Li, Lin Weikai, Jin Mingwu
School of Elec. & Info., Tianjin University, Nankai District, Tianjin 300072, PR China.
School of Elec. & Info., Tianjin University, Nankai District, Tianjin 300072, PR China.
Comput Biol Med. 2015 Jan;56:97-106. doi: 10.1016/j.compbiomed.2014.11.001. Epub 2014 Nov 8.
In this paper, we propose two reconstruction algorithms for sparse-view X-ray computed tomography (CT). Treating the reconstruction problems as data fidelity constrained total variation (TV) minimization, both algorithms adapt the alternate two-stage strategy: projection onto convex sets (POCS) for data fidelity and non-negativity constraints and steepest descent for TV minimization. The novelty of this work is to determine iterative parameters automatically from data, thus avoiding tedious manual parameter tuning. In TV minimization, the step sizes of steepest descent are adaptively adjusted according to the difference from POCS update in either the projection domain or the image domain, while the step size of algebraic reconstruction technique (ART) in POCS is determined based on the data noise level. In addition, projection errors are used to compare with the error bound to decide whether to perform ART so as to reduce computational costs. The performance of the proposed methods is studied and evaluated using both simulated and physical phantom data. Our methods with automatic parameter tuning achieve similar, if not better, reconstruction performance compared to a representative two-stage algorithm.
在本文中,我们提出了两种用于稀疏视图X射线计算机断层扫描(CT)的重建算法。这两种算法将重建问题视为数据保真度约束的总变分(TV)最小化问题,并都采用了交替两阶段策略:在凸集上投影(POCS)以实现数据保真度和非负性约束,以及最速下降法以实现TV最小化。这项工作的新颖之处在于从数据中自动确定迭代参数,从而避免了繁琐的手动参数调整。在TV最小化中,最速下降法的步长根据投影域或图像域中与POCS更新的差异进行自适应调整,而POCS中代数重建技术(ART)的步长则基于数据噪声水平来确定。此外,投影误差用于与误差界限进行比较,以决定是否执行ART,从而降低计算成本。使用模拟和物理体模数据对所提出方法的性能进行了研究和评估。与一种具有代表性的两阶段算法相比,我们具有自动参数调整功能的方法实现了相似(如果不是更好)的重建性能。