School of Electronic Information Engineering, Tianjin University, Tianjin 300072, PR China.
Comput Biol Med. 2013 Dec;43(12):2163-76. doi: 10.1016/j.compbiomed.2013.09.014. Epub 2013 Sep 25.
Iterative algorithms based on constrained total-variation (TV) optimization are effective for the reconstruction of limited data from X-ray computed tomography (CT). Such algorithms can be executed by implementing alternative operations projection onto convex sets (POCS) on the constraints, and a gradient descent approach for TV objective minimization. To balance TV-gradient descent with POCS, the adaptive-steepest-descent (ASD) method utilizes a set of complicated parameters to adjust the TV-gradient-descent step-size. The optimal parameters are difficult for users to select, and moreover, users have to empirically choose different parameters when reconstructing different types of images. To deal with these drawbacks, this paper proposes a nonparametric method for constrained TV optimization. The method automatically updates the step-size of TV iteration according to the changes in the consistency term defined by the constraints without introducing artificial parameters. The proposed method avoids the time-consuming parameter optimization, and can be conveniently implemented in various applications. Experimental results on phantom data demonstrate the flexibility and effectiveness of the proposed method.
基于约束全变差(TV)优化的迭代算法对于从 X 射线计算机断层扫描(CT)重建有限数据非常有效。此类算法可以通过在约束条件上实现交替投影到凸集(POCS)操作和 TV 目标最小化的梯度下降方法来执行。为了在 TV 梯度下降和 POCS 之间取得平衡,自适应最速下降(ASD)方法使用一组复杂的参数来调整 TV 梯度下降的步长。最优参数对于用户来说很难选择,而且,当重建不同类型的图像时,用户还必须凭经验选择不同的参数。为了解决这些缺点,本文提出了一种用于约束 TV 优化的非参数方法。该方法根据约束定义的一致性项的变化自动更新 TV 迭代的步长,而无需引入人工参数。该方法避免了耗时的参数优化,并可以方便地应用于各种应用中。对幻影数据的实验结果表明了该方法的灵活性和有效性。