Gavalda Sabine, Bardou Fabienne, Laval Françoise, Bon Cécile, Malaga Wladimir, Chalut Christian, Guilhot Christophe, Mourey Lionel, Daffé Mamadou, Quémard Annaïk
Department Tuberculose & Biologie des Infections, CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), UMR5089, 205 route de Narbonne, BP64182, 31077 Toulouse, France; Université de Toulouse, UPS, IPBS, 31077 Toulouse, France.
Department Biologie Structurale et Biophysique, CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), UMR5089, 205 route de Narbonne, BP64182, 31077 Toulouse, France; Université de Toulouse, UPS, IPBS, 31077 Toulouse, France.
Chem Biol. 2014 Dec 18;21(12):1660-9. doi: 10.1016/j.chembiol.2014.10.011. Epub 2014 Nov 26.
Mycolate-containing compounds constitute major strategic elements of the protective coat surrounding the tubercle bacillus. We have previously shown that FAAL32-Pks13 polyketide synthase catalyzes the condensation reaction, which produces α-alkyl β-ketoacids, direct precursors of mycolic acids. In contrast to the current biosynthesis model, we show here that Pks13 catalyzes itself the release of the neosynthesized products and demonstrate that this function is carried by its thioesterase-like domain. Most importantly, in agreement with the prediction of a trehalose-binding pocket in its catalytic site, this domain exhibits an acyltransferase activity and transfers Pks13's products onto an acceptor molecule, mainly trehalose, leading to the formation of the trehalose monomycolate precursor. Thus, this work allows elucidation of the hinge step of the mycolate-containing compound biosynthesis pathway. Above all, it highlights a unique mechanism of transfer of polyketide synthase products in mycobacteria, which is distinct from the conventional intervention of the discrete polyketide-associated protein (Pap)-type acyltransferases.
含分枝菌酸的化合物构成了结核杆菌周围保护涂层的主要战略要素。我们之前已经表明,FAAL32-Pks13聚酮合酶催化缩合反应,该反应产生α-烷基β-酮酸,即分枝菌酸的直接前体。与当前的生物合成模型不同,我们在此表明Pks13自身催化新合成产物的释放,并证明该功能由其类硫酯酶结构域承担。最重要的是,与其催化位点中存在海藻糖结合口袋的预测一致,该结构域表现出酰基转移酶活性,并将Pks13的产物转移到受体分子上,主要是海藻糖,导致形成海藻糖单分枝菌酸酯前体。因此,这项工作有助于阐明含分枝菌酸化合物生物合成途径的关键步骤。最重要的是,它突出了分枝杆菌中聚酮合酶产物转移的独特机制,这与离散的聚酮相关蛋白(Pap)型酰基转移酶的传统干预不同。