Suppr超能文献

肉碱酰基转移酶结构域催化的真菌聚酮化合物的d-半乳糖酯化反应

d-Galactose-Esterification of a Fungal Polyketide Catalyzed by a Carnitine Acyltransferase Domain.

作者信息

Nagasawa Kyle K, Yost Karl M, Sun Zuodong, Tang Yi

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States.

Present address: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02188, United States.

出版信息

Chembiochem. 2025 Feb 16;26(4):e202400846. doi: 10.1002/cbic.202400846. Epub 2025 Jan 8.

Abstract

While sugar-containing natural products are commonly biosynthesized via glycosyltranferases using sugar-UDP as the electrophile, nature has evolved alternative strategies of glyco-modification to expand the diversity of natural products. Hydroxyl groups on sugars can serve as nucleophiles in the release of polyketide products from polyketide synthases. Herein, we demonstrate a highly reducing polyketide synthase (HRPKS) from the biocontrol fungus Trichoderma afroharzianum T22, which is terminated with a carnitine acyltransferase (cAT) domain, catalyzes the biosynthesis of a d-galactose esterified polyketide named as trichogalactin. Structure-guided enzymatic assays showed that the sugar nucleophile in the esterification reaction catalyzed by cAT is α-d-galactose-1-phosphate (Gal-1-P) instead of free d-galactose. The released product, trichogalactin phosphate, is subsequently dephosphorylated by a host alkaline phosphatase to complete the biosynthesis of trichogalactin. The cAT domain is highly specific for Gal-1-P and does not accept α-d-glucose-1-phosphate or α-d-mannose-1-phosphate. Our study expands the inventory of natural products from an agriculturally important fungus and demonstrates the potential of mining cAT-containing HRPKSs to discover new glyco-esterified natural products.

摘要

虽然含糖类天然产物通常是通过糖基转移酶以糖-UDP作为亲电试剂进行生物合成的,但自然界已经进化出了糖基修饰的替代策略,以扩大天然产物的多样性。糖上的羟基可以作为亲核试剂,参与从聚酮合酶中释放聚酮产物的过程。在此,我们展示了一种来自生防真菌哈茨木霉非洲变种T22的高度还原型聚酮合酶(HRPKS),该酶以肉碱酰基转移酶(cAT)结构域终止,催化一种名为曲古乳糖的d-半乳糖酯化聚酮的生物合成。结构导向的酶活性测定表明,cAT催化的酯化反应中的糖亲核试剂是α-d-半乳糖-1-磷酸(Gal-1-P),而不是游离的d-半乳糖。释放的产物曲古乳糖磷酸随后被宿主碱性磷酸酶去磷酸化,以完成曲古乳糖的生物合成。cAT结构域对Gal-1-P具有高度特异性,不接受α-d-葡萄糖-1-磷酸或α-d-甘露糖-1-磷酸。我们的研究扩展了一种重要农业真菌的天然产物库,并展示了挖掘含cAT的HRPKS以发现新的糖酯化天然产物的潜力。

相似文献

1
d-Galactose-Esterification of a Fungal Polyketide Catalyzed by a Carnitine Acyltransferase Domain.
Chembiochem. 2025 Feb 16;26(4):e202400846. doi: 10.1002/cbic.202400846. Epub 2025 Jan 8.
2
Structural insights and rational engineering strategies for modular polyketide synthases: A review.
Int J Biol Macromol. 2025 Aug;319(Pt 3):145299. doi: 10.1016/j.ijbiomac.2025.145299. Epub 2025 Jun 16.
4
Reversible Product Release and Recapture by a Fungal Polyketide Synthase Using a Carnitine Acyltransferase Domain.
Angew Chem Int Ed Engl. 2017 Aug 1;56(32):9556-9560. doi: 10.1002/anie.201705237. Epub 2017 Jul 5.
5
Enzymatic ester bond formation strategies in fungal macrolide skeletons.
Nat Prod Rep. 2025 Feb 19;42(2):298-323. doi: 10.1039/d4np00050a.
6
Genome-based discovery of polyketides generated by trans-acyltransferase polyketide synthases.
Methods Enzymol. 2025;717:317-347. doi: 10.1016/bs.mie.2025.03.002. Epub 2025 Apr 22.
7
Modifications of Protein-Bound Substrates by Trans-Acting Enzymes in Natural Products Biosynthesis.
Chembiochem. 2024 Apr 16;25(8):e202400056. doi: 10.1002/cbic.202400056. Epub 2024 Mar 11.
8
Ancestral sequence reconstruction as a tool for structural analysis of modular polyketide synthases.
Nat Commun. 2025 Jul 25;16(1):6847. doi: 10.1038/s41467-025-62168-0.
9
The structure of full-length AFPK supports the ACP linker in a role that regulates iterative polyketide and fatty acid assembly.
Proc Natl Acad Sci U S A. 2025 Feb 11;122(6):e2419884122. doi: 10.1073/pnas.2419884122. Epub 2025 Feb 6.
10
Ketosynthase Domain Catalyzes β-Lactonization in the Biosynthesis of the HMG-CoA Synthase Inhibitor Hymeglusin.
J Am Chem Soc. 2025 Jul 23;147(29):25136-25141. doi: 10.1021/jacs.5c07060. Epub 2025 Jul 10.

本文引用的文献

1
Accurate structure prediction of biomolecular interactions with AlphaFold 3.
Nature. 2024 Jun;630(8016):493-500. doi: 10.1038/s41586-024-07487-w. Epub 2024 May 8.
2
Targeted Discovery of Glycosylated Natural Products by Tailoring Enzyme-Guided Genome Mining and MS-Based Metabolome Analysis.
J Am Chem Soc. 2024 Apr 10;146(14):9614-9622. doi: 10.1021/jacs.3c12895. Epub 2024 Mar 28.
4
Genome Mining from Agriculturally Relevant Fungi Led to a d-Glucose Esterified Polyketide with a Terpene-like Core Structure.
J Am Chem Soc. 2023 Nov 22;145(46):25080-25085. doi: 10.1021/jacs.3c10179. Epub 2023 Nov 10.
5
Assessing the Biosynthetic Inventory of the Biocontrol Fungus T22.
J Agric Food Chem. 2023 Aug 2;71(30):11502-11519. doi: 10.1021/acs.jafc.3c03240. Epub 2023 Jul 20.
8
Biosynthesis of Heptacyclic Duclauxins Requires Extensive Redox Modifications of the Phenalenone Aromatic Polyketide.
J Am Chem Soc. 2018 Jun 6;140(22):6991-6997. doi: 10.1021/jacs.8b03705. Epub 2018 May 24.
9
Eight Kinetically Stable but Thermodynamically Activated Molecules that Power Cell Metabolism.
Chem Rev. 2018 Feb 28;118(4):1460-1494. doi: 10.1021/acs.chemrev.7b00510. Epub 2017 Dec 22.
10
Reversible Product Release and Recapture by a Fungal Polyketide Synthase Using a Carnitine Acyltransferase Domain.
Angew Chem Int Ed Engl. 2017 Aug 1;56(32):9556-9560. doi: 10.1002/anie.201705237. Epub 2017 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验