Marcián Petr, Borák Libor, Valášek Jiří, Kaiser Jozef, Florian Zdeněk, Wolff Jan
Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic.
Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic.
J Biomech. 2014 Dec 18;47(16):3830-6. doi: 10.1016/j.jbiomech.2014.10.019. Epub 2014 Oct 31.
The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant geometries and the levels of bone-to-implant contact (BIC) on the surrounding bone. Six mandibular bone segments demonstrating different grades of mandibular bone atrophy and various bone volume fractions (from 0.149 to 0.471) were imaged using a micro-CT device. The acquired bone STL models and implant (Brånemark, Straumann, Ankylos) were merged into a three-dimensional finite elements structure. The mean displacement value for all implants was 3.1 ±1.2 µm. Displacements were lower in the group with a strong BIC. The results indicated that the maximum strain values of cortical and cancellous bone increased with lower bone density. Strain distribution is the first and foremost dependent on the shape of bone and architecture of cancellous bone. The geometry of the implant, thread patterns, grade of bone atrophy and BIC all affect the displacement and micro-strain on the mandible bone. Preoperative finite element analysis could offer improved predictability in the long-term outlook of dental implant restorations.
本研究的首要目的是通过有限元分析(FEA)评估轴向加载的牙种植体在不同程度萎缩的皮质骨和小梁骨下颌骨上引起的位移和微应变。第二个目的是评估不同种植体几何形状以及种植体与骨接触(BIC)水平对周围骨所引起的微应变。使用微型CT设备对六个显示不同程度下颌骨萎缩和不同骨体积分数(从0.149至0.471)的下颌骨节段进行成像。将获取的骨STL模型和种植体(布伦马克、士卓曼、安可洛)合并成三维有限元结构。所有种植体的平均位移值为3.1±1.2 µm。BIC强的组中位移较低。结果表明,皮质骨和松质骨的最大应变值随骨密度降低而增加。应变分布首先且最重要的是取决于骨的形状和松质骨结构。种植体的几何形状、螺纹模式、骨萎缩程度和BIC均会影响下颌骨的位移和微应变。术前有限元分析可为牙种植修复的长期预后提供更高的可预测性。