Dillard Pierre, Varma Rajat, Sengupta Kheya, Limozin Laurent
Adhesion & Inflammation, Aix-Marseille University, Inserm UMR 1067, CNRS UMR 7333, Marseille, France; CINAM, Aix-Marseille University, CNRS UMR 7325, Marseille, France.
Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD.
Biophys J. 2014 Dec 2;107(11):2629-38. doi: 10.1016/j.bpj.2014.10.044.
Spreading of T cells on antigen presenting cells is a crucial initial step in immune response. Spreading occurs through rapid morphological changes concomitant with the reorganization of surface receptors and of the cytoskeleton. Ligand mobility and frictional coupling of receptors to the cytoskeleton were separately recognized as important factors but a systematic study to explore their biophysical role in spreading was hitherto missing. To explore the impact of ligand mobility, we prepared chemically identical substrates on which molecules of anti-CD3 (capable of binding and activating the T cell receptor complex), were either immobilized or able to diffuse. We quantified the T cell spreading area and cell edge dynamics using quantitative reflection interference contrast microscopy, and imaged the actin distribution. On mobile ligands, as compared to fixed ligands, the cells spread much less, the actin is centrally, rather than peripherally distributed and the edge dynamics is largely altered. Blocking myosin-II or adding molecules of ICAM1 on the substrate largely abrogates these differences. We explain these observations by building a model based on the balance of forces between activation-dependent actin polymerization and actomyosin-generated tension on one hand, and on the frictional coupling of the ligand-receptor complexes with the actin cytoskeleton, the membrane and the substrate, on the other hand. Introducing the measured edge velocities in the model, we estimate the coefficient of frictional coupling between T Cell receptors or LFA-1 and the actin cytoskeleton. Our results provide for the first time, to our knowledge, a quantitative framework bridging T cell-specific biology with concepts developed for integrin-based mechanisms of spreading.
T细胞在抗原呈递细胞上的铺展是免疫反应中至关重要的起始步骤。铺展通过与表面受体和细胞骨架重组相伴的快速形态变化而发生。配体流动性以及受体与细胞骨架的摩擦偶联分别被认为是重要因素,但此前缺少一项系统性研究来探究它们在铺展过程中的生物物理作用。为了探究配体流动性的影响,我们制备了化学性质相同的底物,在这些底物上,抗CD3分子(能够结合并激活T细胞受体复合物)要么是固定的,要么能够扩散。我们使用定量反射干涉对比显微镜对T细胞铺展面积和细胞边缘动态进行了量化,并对肌动蛋白分布进行了成像。与固定配体相比,在可移动配体上,细胞铺展程度小得多,肌动蛋白集中分布而非分布在周边,并且边缘动态有很大改变。阻断肌球蛋白-II或在底物上添加细胞间黏附分子-1分子在很大程度上消除了这些差异。我们通过构建一个模型来解释这些观察结果,该模型一方面基于激活依赖性肌动蛋白聚合与肌动球蛋白产生的张力之间的力平衡,另一方面基于配体-受体复合物与肌动蛋白细胞骨架、细胞膜和底物之间的摩擦偶联。将测得的边缘速度引入模型中,我们估算了T细胞受体或淋巴细胞功能相关抗原-1与肌动蛋白细胞骨架之间的摩擦偶联系数。据我们所知,我们的结果首次提供了一个定量框架,将T细胞特异性生物学与为基于整合素的铺展机制所发展的概念联系起来。