Suppr超能文献

预测肺炎中耐药菌的风险:超越医疗保健相关肺炎(HCAP)模型

Predicting risk of drug-resistant organisms in pneumonia: moving beyond the HCAP model.

作者信息

Webb Brandon J, Dascomb Kristin, Stenehjem Edward, Dean Nathan

机构信息

Division of Infectious Diseases, University of Utah, Salt Lake City, UT, USA; Division of Clinical Epidemiology and Infectious Diseases, Intermountain Medical Center, Salt Lake City, UT, USA.

Division of Infectious Diseases, University of Utah, Salt Lake City, UT, USA; Division of Clinical Epidemiology and Infectious Diseases, Intermountain Medical Center, Salt Lake City, UT, USA.

出版信息

Respir Med. 2015 Jan;109(1):1-10. doi: 10.1016/j.rmed.2014.10.017. Epub 2014 Nov 13.

Abstract

BACKGROUND

Clinical management of community-acquired pneumonia (CAP) is increasingly complicated by antibiotic resistance. CAP due to pathogens resistant to guideline-recommended drugs (CAP-DRP) has increased. 2005 ATS/IDSA guidelines introduced a new category, healthcare-associated pneumonia (HCAP), and recommend extended-spectrum antibiotic treatment for patients meeting HCAP criteria. However, the predictive value of the HCAP model is limited and data suggest that outcomes are not improved using HCAP guideline-concordant therapy. Better methods to predict risk of CAP-DRP are needed.

METHODS

We reviewed currently published literature on the performance status of HCAP as a predictive tool and studies describing additional risk factors for CAP-DRP. We also summarize the performance characteristics of the currently published alternative clinical prediction scores and compare them to that of the HCAP model.

RESULTS

In addition to the five risk factors incorporated in HCAP, at least 13 other factors have been identified. The independent predictive value of any single factor is low, but accumulating factors results in increased risk of CAP-DRP. The performance characteristics of 9 clinical prediction scores are reviewed. Nearly all of the scores outperformed HCAP in their study populations. However, no single model has yet demonstrated adequate specificity to minimize unnecessary antibiotic use, while retaining sufficient sensitivity to prevent inadequate initial empiric antibiotic therapy when validated across a wide range of CAP-DRP prevalence.

CONCLUSIONS

Additional development and validation of prediction scores based upon more refined risk factors for CAP-DRP is needed. Once an accurate, adequately validated prediction score is available, an interventional trial will be needed to determine clinical impact.

摘要

背景

社区获得性肺炎(CAP)的临床管理因抗生素耐药性而日益复杂。由对指南推荐药物耐药的病原体引起的CAP(CAP-DRP)有所增加。2005年美国胸科学会/美国感染病学会(ATS/IDSA)指南引入了一个新类别,即医疗保健相关肺炎(HCAP),并建议对符合HCAP标准的患者采用广谱抗生素治疗。然而,HCAP模型的预测价值有限,数据表明使用符合HCAP指南的治疗方法并不能改善预后。需要更好的方法来预测CAP-DRP的风险。

方法

我们回顾了目前已发表的关于HCAP作为预测工具的性能状况的文献,以及描述CAP-DRP其他风险因素的研究。我们还总结了目前已发表的替代临床预测评分的性能特征,并将它们与HCAP模型的性能特征进行比较。

结果

除了HCAP中纳入的五个风险因素外,至少还确定了其他13个因素。任何单一因素的独立预测价值都很低,但因素的累积会导致CAP-DRP风险增加。我们回顾了9种临床预测评分的性能特征。几乎所有评分在其研究人群中的表现都优于HCAP。然而,在广泛的CAP-DRP患病率范围内进行验证时,没有一个单一模型显示出足够的特异性以尽量减少不必要的抗生素使用,同时保持足够的敏感性以防止初始经验性抗生素治疗不足。

结论

需要基于更精细的CAP-DRP风险因素进一步开发和验证预测评分。一旦有了准确、充分验证的预测评分,就需要进行一项干预试验来确定其临床影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验