Suppr超能文献

生理高频震荡的空间和信号特征。

The spatial and signal characteristics of physiologic high frequency oscillations.

机构信息

Department of Neurology, Yale Comprehensive Epilepsy Center, New Haven, Connecticut, U.S.A.

出版信息

Epilepsia. 2014 Dec;55(12):1986-95. doi: 10.1111/epi.12851. Epub 2014 Dec 3.

Abstract

OBJECTIVES

To study the incidence, spatial distribution, and signal characteristics of high frequency oscillations (HFOs) outside the epileptic network.

METHODS

We included patients who underwent invasive evaluations at Yale Comprehensive Epilepsy Center from 2012 to 2013, had all major lobes sampled, and had localizable seizure onsets. Segments of non-rapid eye movement (NREM) sleep prior to the first seizure were analyzed. We implemented a semiautomated process to analyze oscillations with peak frequencies >80 Hz (ripples 80-250 Hz; fast ripples 250-500 Hz). A contact location was considered epileptic if it exhibited epileptiform discharges during the intracranial evaluation or was involved ictally within 5 s of seizure onset; otherwise it was considered nonepileptic.

RESULTS

We analyzed recordings from 1,209 electrode contacts in seven patients. The nonepileptic contacts constituted 79.1% of the total number of contacts. Ripples constituted 99% of total detections. Eighty-two percent of all HFOs were seen in 45.2% of the nonepileptic contacts (82.1%, 47%, 34.6%, and 34% of the occipital, parietal, frontal, and temporal nonepileptic contacts, respectively). The following sublobes exhibited physiologic HFOs in all patients: Perirolandic, basal temporal, and occipital subregions. The ripples from nonepileptic sites had longer duration, higher amplitude, and lower peak frequency than ripples from epileptic sites. A high HFO rate (>1/min) was seen in 110 nonepileptic contacts, of which 68.2% were occipital. Fast ripples were less common, seen in nonepileptic parietooccipital regions only in two patients and in the epileptic mesial temporal structures.

CONCLUSIONS

There is consistent occurrence of physiologic HFOs over vast areas of the neocortex outside the epileptic network. HFOs from nonepileptic regions were seen in the occipital lobes and in the perirolandic region in all patients. Although duration of ripples and peak frequency of HFOs are the most effective measures in distinguishing pathologic from physiologic events, there was significant overlap between the two groups.

摘要

目的

研究癫痫网络外高频振荡(HFOs)的发生率、空间分布和信号特征。

方法

我们纳入了 2012 年至 2013 年在耶鲁综合癫痫中心接受侵袭性评估的患者,所有主要脑叶均有样本采集,并具有可定位的发作起始。分析首次发作前非快速眼动(NREM)睡眠的片段。我们实施了一种半自动过程来分析峰值频率>80 Hz 的振荡(锐波 80-250 Hz;快锐波 250-500 Hz)。如果一个接触点在颅内评估期间表现出癫痫样放电,或者在发作起始后 5 秒内参与发作,则被认为是癫痫性的;否则,被认为是非癫痫性的。

结果

我们分析了来自 7 名患者的 1209 个电极接触的记录。非癫痫性接触点构成了总接触点的 79.1%。锐波构成了总检测的 99%。所有 HFO 中,82%见于 45.2%的非癫痫性接触点(分别为 82.1%、47%、34.6%和 34%的枕叶、顶叶、额叶和颞叶非癫痫性接触点)。以下亚区在所有患者中均显示出生理性 HFOs:旁中央区、基底颞叶和枕叶亚区。来自非癫痫性部位的锐波具有比来自癫痫性部位的锐波更长的持续时间、更高的振幅和更低的峰值频率。在 110 个非癫痫性接触点中观察到高 HFO 率(>1/min),其中 68.2%为枕叶。快锐波较少见,仅在 2 名患者的非癫痫性顶枕叶区和癫痫性内侧颞叶结构中可见。

结论

在癫痫网络外的新皮质大片区持续存在生理性 HFOs。所有患者的枕叶和旁中央区都可见来自非癫痫区的 HFOs。虽然锐波的持续时间和 HFO 的峰值频率是区分病理性和生理性事件的最有效措施,但两组之间存在显著重叠。

相似文献

1
The spatial and signal characteristics of physiologic high frequency oscillations.
Epilepsia. 2014 Dec;55(12):1986-95. doi: 10.1111/epi.12851. Epub 2014 Dec 3.
3
Interictal high-frequency oscillations generated by seizure onset and eloquent areas may be differentially coupled with different slow waves.
Clin Neurophysiol. 2016 Jun;127(6):2489-99. doi: 10.1016/j.clinph.2016.03.022. Epub 2016 Apr 6.
4
Epileptic high-frequency oscillations in intraoperative electrocorticography: the effect of propofol.
Epilepsia. 2012 Oct;53(10):1799-809. doi: 10.1111/j.1528-1167.2012.03650.x. Epub 2012 Sep 17.
5
Physiological Ripples Associated with Sleep Spindles Differ in Waveform Morphology from Epileptic Ripples.
Int J Neural Syst. 2017 Nov;27(7):1750011. doi: 10.1142/S0129065717500113. Epub 2016 Nov 2.
6
Electrical stimulation for cortical mapping reduces the density of high frequency oscillations.
Epilepsy Res. 2014 Dec;108(10):1758-69. doi: 10.1016/j.eplepsyres.2014.09.022. Epub 2014 Sep 28.
7
Bimodal coupling of ripples and slower oscillations during sleep in patients with focal epilepsy.
Epilepsia. 2017 Nov;58(11):1972-1984. doi: 10.1111/epi.13912. Epub 2017 Sep 26.
9
Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy.
Brain. 2010 Jan;133(Pt 1):33-45. doi: 10.1093/brain/awp277. Epub 2009 Nov 17.
10
Temporal and spatial characteristics of high frequency oscillations as a new biomarker in epilepsy.
Epilepsia. 2015 Feb;56(2):197-206. doi: 10.1111/epi.12844. Epub 2014 Dec 30.

引用本文的文献

1
Cerebellar tDCS differentially modulates sensory inputs in somatosensory cortex and cerebellum.
bioRxiv. 2025 May 12:2025.05.12.653393. doi: 10.1101/2025.05.12.653393.
2
Noninvasive classification of physiological and pathological high frequency oscillations in children.
Brain Commun. 2025 May 2;7(3):fcaf170. doi: 10.1093/braincomms/fcaf170. eCollection 2025.
3
Spike Ripples: Hidden Clues to the Mystery of the Epileptogenic Zone.
Epilepsy Curr. 2025 Jan 6;25(2):101-103. doi: 10.1177/15357597241306610. eCollection 2025 Mar-Apr.
4
Fast activity chirp patterns in focal seizures from patients and animal models.
Epilepsia. 2025 Mar;66(3):621-631. doi: 10.1111/epi.18245. Epub 2024 Dec 26.
5
A data augmentation procedure to improve detection of spike ripples in brain voltage recordings.
Neurosci Res. 2025 Jun;215:15-26. doi: 10.1016/j.neures.2024.07.005. Epub 2024 Aug 3.
6
Self-Supervised Data-Driven Approach Defines Pathological High-Frequency Oscillations in Human.
medRxiv. 2024 Nov 5:2024.07.10.24310189. doi: 10.1101/2024.07.10.24310189.
7
Pathological and Physiological High-frequency Oscillations on Electroencephalography in Patients with Epilepsy.
Neurosci Bull. 2024 May;40(5):609-620. doi: 10.1007/s12264-023-01150-6. Epub 2023 Nov 24.
10
Progressive sleep disturbance in various transgenic mouse models of Alzheimer's disease.
Front Aging Neurosci. 2023 May 19;15:1119810. doi: 10.3389/fnagi.2023.1119810. eCollection 2023.

本文引用的文献

1
Differentiation of specific ripple patterns helps to identify epileptogenic areas for surgical procedures.
Clin Neurophysiol. 2014 Jul;125(7):1339-45. doi: 10.1016/j.clinph.2013.11.030. Epub 2013 Dec 6.
2
Continuous High Frequency Activity: a peculiar SEEG pattern related to specific brain regions.
Clin Neurophysiol. 2013 Aug;124(8):1507-16. doi: 10.1016/j.clinph.2012.11.016. Epub 2013 Jun 12.
4
Ripple classification helps to localize the seizure-onset zone in neocortical epilepsy.
Epilepsia. 2013 Feb;54(2):370-6. doi: 10.1111/j.1528-1167.2012.03721.x. Epub 2012 Oct 25.
5
Resection of ictal high-frequency oscillations leads to favorable surgical outcome in pediatric epilepsy.
Epilepsia. 2012 Sep;53(9):1607-17. doi: 10.1111/j.1528-1167.2012.03629.x. Epub 2012 Aug 20.
6
Clinical utility of interictal high-frequency oscillations recorded with subdural macroelectrodes in partial epilepsy.
J Clin Neurol. 2012 Mar;8(1):22-34. doi: 10.3988/jcn.2012.8.1.22. Epub 2012 Mar 31.
7
Distinct hyperexcitability mechanisms underlie fast ripples and epileptic spikes.
Ann Neurol. 2012 Mar;71(3):342-52. doi: 10.1002/ana.22610.
8
Data mining neocortical high-frequency oscillations in epilepsy and controls.
Brain. 2011 Oct;134(Pt 10):2948-59. doi: 10.1093/brain/awr212. Epub 2011 Sep 8.
9
Focal resection of fast ripples on extraoperative intracranial EEG improves seizure outcome in pediatric epilepsy.
Epilepsia. 2011 Oct;52(10):1802-11. doi: 10.1111/j.1528-1167.2011.03199.x. Epub 2011 Jul 29.
10
Ictal high-frequency oscillations in neocortical epilepsy: implications for seizure localization and surgical resection.
Epilepsia. 2011 Oct;52(10):1792-801. doi: 10.1111/j.1528-1167.2011.03165.x. Epub 2011 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验