Suppr超能文献

儿童生理和病理高频振荡的无创分类

Noninvasive classification of physiological and pathological high frequency oscillations in children.

作者信息

Fabbri Lorenzo, Tamilia Eleonora, Matarrese Margherita A G, Tran Linh, Malik Saleem I, Shahani Dave, Keator Cynthia G, Stufflebeam Steven M, Pearl Phillip L, Perry M Scott, Papadelis Christos

机构信息

Neuroscience Research, Jane and John Justin Institute for Mind Health, Cook Children's Health Care System, Fort Worth, TX 76104, USA.

Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA.

出版信息

Brain Commun. 2025 May 2;7(3):fcaf170. doi: 10.1093/braincomms/fcaf170. eCollection 2025.

Abstract

High frequency oscillations have been extensively investigated as interictal biomarkers of epilepsy. Yet, their value is largely debated due to the presence of physiological oscillations, which complicate distinguishing between normal versus abnormal events. So far, this debate has been addressed using intracranial EEG data from patients with drug-resistant epilepsy. Yet, this approach suffers from inability to record control data from healthy subjects and lack of whole brain coverage. Here, we aim to differentiate physiological from pathological high frequency oscillations using non-invasive whole brain electrophysiological recordings from children with drug-resistant epilepsy and typically developing controls. We recorded high-density EEG and magnetoencephalography data from 47 controls (median age: 11 years; 25 females) and 54 children with drug-resistant epilepsy (median age: 14 years, 33 females). We detected high frequency oscillations (in ripple frequency band) semi-automatically and localized their cortical generators through electric or magnetic source imaging. From each ripple, we extracted a set of temporal, morphological, spectral and spatial features. We then compared the features between ripples recorded from the epileptic brain (further distinguished into those from epileptogenic and non-epileptogenic regions) and those recorded from the control group (normal brain). We used these features to cross-validate a Naïve-Bayes algorithm for classifying each ripple recorded from children with epilepsy as coming from an epileptogenic region or not. We observed more high frequency oscillations on EEG than magnetoencephalography recordings ( < 0.001) both in the epilepsy and control groups. Physiological high frequency oscillations (recorded from controls) showed lower power, shorter duration and less variability (in both amplitude and duration) than those recorded from the epilepsy group ( < 0.001). Inter-channel latency of physiological ripples was longer compared to ripples from the epileptogenic regions ( < 0.01), while it was similar to the ripples from non-epileptogenic regions ( > 0.05). Ripples from epileptogenic regions showed larger extent than those from non-epileptogenic regions or from the control group ( < 0.001). The classification model showed an accuracy of 73%, with negative and positive predictive values of 73% and 70% ( < 0.0001), respectively, in classifying high frequency oscillations from the drug-resistant epilepsy group (as either epileptogenic or not). Our study indicates that physiological high frequency oscillations, recorded from the healthy brain, have distinct temporal, morphological, spectral and spatial features compared to those generated by the epileptic brain. The differentiation of pathological from physiological high frequency oscillations through non-invasive full-head techniques may augment the presurgical evaluation process of children with drug-resistant epilepsy and lead to better postsurgical seizure outcomes.

摘要

高频振荡已被广泛研究作为癫痫发作间期的生物标志物。然而,由于生理振荡的存在,其价值在很大程度上存在争议,这使得区分正常事件与异常事件变得复杂。到目前为止,这场争论一直通过耐药性癫痫患者的颅内脑电图数据来解决。然而,这种方法存在无法记录健康受试者的对照数据以及缺乏全脑覆盖的问题。在此,我们旨在利用耐药性癫痫儿童和正常发育对照儿童的非侵入性全脑电生理记录,区分生理性和病理性高频振荡。我们记录了47名对照者(中位年龄:11岁;25名女性)和54名耐药性癫痫儿童(中位年龄:14岁,33名女性)的高密度脑电图和脑磁图数据。我们半自动检测高频振荡(在涟漪频段),并通过电或磁源成像定位其皮质起源。从每个涟漪中,我们提取了一组时间、形态、频谱和空间特征。然后,我们比较了癫痫脑记录的涟漪(进一步分为来自致痫区和非致痫区的涟漪)与对照组(正常脑)记录的涟漪之间的特征。我们使用这些特征对朴素贝叶斯算法进行交叉验证,以将癫痫儿童记录的每个涟漪分类为是否来自致痫区。我们观察到,在癫痫组和对照组中,脑电图上的高频振荡都比脑磁图记录更多(<0.001)。生理性高频振荡(从对照者记录)显示出比癫痫组记录的更低的功率、更短的持续时间以及更小的变异性(在幅度和持续时间方面均如此)(<0.001)。生理性涟漪的通道间潜伏期比致痫区的涟漪更长(<0.01),而与非致痫区的涟漪相似(>0.05)。来自致痫区的涟漪比来自非致痫区或对照组的涟漪显示出更大的范围(<0.001)。在对耐药性癫痫组的高频振荡进行分类(判断是否为致痫性)时,分类模型的准确率为73%,阴性预测值和阳性预测值分别为73%和70%(<0.0001)。我们的研究表明,与癫痫脑产生的高频振荡相比,从健康脑记录的生理性高频振荡具有明显不同的时间、形态、频谱和空间特征。通过非侵入性全头技术区分病理性和生理性高频振荡,可能会增强耐药性癫痫儿童的术前评估过程,并带来更好的术后癫痫发作结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c935/12077393/a5326ffde5ee/fcaf170_ga.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验