Schlafly Emily D, Carbonero Daniel, Chu Catherine J, Kramer Mark A
Department of Mathematics and Statistics, Boston University, Boston, MA, USA.
Department of Biomedical Engineering, Boston University, Boston, MA, USA.
Neurosci Res. 2025 Jun;215:15-26. doi: 10.1016/j.neures.2024.07.005. Epub 2024 Aug 3.
Epilepsy is a major neurological disorder characterized by recurrent, spontaneous seizures. For patients with drug-resistant epilepsy, treatments include neurostimulation or surgical removal of the epileptogenic zone (EZ), the brain region responsible for seizure generation. Precise targeting of the EZ requires reliable biomarkers. Spike ripples - high-frequency oscillations that co-occur with large amplitude epileptic discharges - have gained prominence as a candidate biomarker. However, spike ripple detection remains a challenge. The gold-standard approach requires an expert manually visualize and interpret brain voltage recordings, which limits reproducibility and high-throughput analysis. Addressing these limitations requires more objective, efficient, and automated methods for spike ripple detection, including approaches that utilize deep neural networks. Despite advancements, dataset heterogeneity and scarcity severely limit machine learning performance. Our study explores long-short term memory (LSTM) neural network architectures for spike ripple detection, leveraging data augmentation to improve classifier performance. We highlight the potential of combining training on augmented and in vivo data for enhanced spike ripple detection and ultimately improving diagnostic accuracy in epilepsy treatment.
癫痫是一种主要的神经系统疾病,其特征为反复发作的自发性癫痫发作。对于耐药性癫痫患者,治疗方法包括神经刺激或手术切除致痫区(EZ),即负责癫痫发作产生的脑区。精确靶向EZ需要可靠的生物标志物。棘波涟漪——与大幅度癫痫放电同时出现的高频振荡——作为一种候选生物标志物已受到关注。然而,棘波涟漪检测仍然是一项挑战。金标准方法需要专家手动可视化并解释脑电记录,这限制了可重复性和高通量分析。解决这些局限性需要更客观、高效和自动化的棘波涟漪检测方法,包括利用深度神经网络的方法。尽管取得了进展,但数据集的异质性和稀缺性严重限制了机器学习性能。我们的研究探索了用于棘波涟漪检测的长短时记忆(LSTM)神经网络架构,利用数据增强来提高分类器性能。我们强调了结合对增强数据和体内数据进行训练以增强棘波涟漪检测并最终提高癫痫治疗诊断准确性的潜力。