Martínez-Galera A J, Brihuega I, Gutiérrez-Rubio A, Stauber T, Gómez-Rodríguez J M
Departamento Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
1] Departamento Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain [2] Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
Sci Rep. 2014 Dec 4;4:7314. doi: 10.1038/srep07314.
By merging bottom-up and top-down strategies we tailor graphene's electronic properties within nanometer accuracy, which opens up the possibility to design optical and plasmonic circuitries at will. In a first step, graphene electronic properties are macroscopically modified exploiting the periodic potential generated by the self assembly of metal cluster superlattices on a graphene/Ir(111) surface. We then demonstrate that individual metal clusters can be selectively removed by a STM tip with perfect reproducibility and that the structures so created are stable even at room temperature. This enables one to nanopattern circuits down to the 2.5 nm only limited by the periodicity of the Moiré-pattern, i.e., by the distance between neighbouring clusters, and different electronic and optical properties should prevail in the covered and uncovered regions. The method can be carried out on micro-meter-sized regions with clusters of different materials permitting to tune the strength of the periodic potential.
通过结合自下而上和自上而下的策略,我们能够以纳米级精度定制石墨烯的电子特性,这为随意设计光学和等离子体电路开辟了可能性。第一步,利用金属团簇超晶格在石墨烯/Ir(111)表面自组装产生的周期性势场,对石墨烯的电子特性进行宏观改性。然后我们证明,通过STM针尖可以以完美的可重复性选择性地去除单个金属团簇,并且如此创建的结构即使在室温下也是稳定的。这使得人们能够将电路纳米图案化至仅受莫尔图案周期性限制的2.5纳米,即相邻团簇之间的距离,并且在覆盖区域和未覆盖区域应呈现不同的电子和光学特性。该方法可以在微米尺寸的区域上进行,使用不同材料的团簇,从而能够调节周期性势场的强度。