Novikova Olga, Smith Dorie, Hahn Ingrid, Beauregard Arthur, Belfort Marlene
Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America.
Department of Biomedical Sciences, University at Albany, Wadsworth Center, NYS Department of Health, Albany, New York, United States of America.
PLoS Genet. 2014 Dec 4;10(12):e1004853. doi: 10.1371/journal.pgen.1004853. eCollection 2014 Dec.
Mobile genetic elements either encode their own mobilization machineries or hijack them from other mobile elements. Multiple classes of mobile elements often coexist within genomes and it is unclear whether they have the capacity to functionally interact and even collaborate. We investigate the possibility that molecular machineries of disparate mobile elements may functionally interact, using the example of a retrotransposon, in the form of a mobile group II intron, found on a conjugative plasmid pRS01 in Lactococcus lactis. This intron resides within the pRS01 ltrB gene encoding relaxase, the enzyme required for nicking the transfer origin (oriT) for conjugal transmission of the plasmid into a recipient cell. Here, we show that relaxase stimulates both the frequency and diversity of retrotransposition events using a retromobility indicator gene (RIG), and by developing a high-throughput genomic retrotransposition detection system called RIG-Seq. We demonstrate that LtrB relaxase not only nicks ssDNA of its cognate oriT in a sequence- and strand-specific manner, but also possesses weak off-target activity. Together, the data support a model in which the two different mobile elements, one using an RNA-based mechanism, the other using DNA-based transfer, do functionally interact. Intron splicing facilitates relaxase expression required for conjugation, whereas relaxase introduces spurious nicks in recipient DNA that stimulate both the frequency of intron mobility and the density of events. We hypothesize that this functional interaction between the mobile elements would promote horizontal conjugal gene transfer while stimulating intron dissemination in the donor and recipient cells.
可移动遗传元件要么编码自身的移动机制,要么从其他可移动元件中获取它们。多种类型的可移动元件常常共存于基因组中,目前尚不清楚它们是否有能力进行功能上的相互作用甚至协作。我们以乳酸乳球菌接合性质粒pRS01上发现的一种逆转录转座子(以移动II类内含子的形式)为例,研究不同可移动元件的分子机制是否可能发生功能上的相互作用。该内含子位于pRS01的ltrB基因内,该基因编码松弛酶,松弛酶是在质粒向受体细胞进行接合转移时切割转移起始点(oriT)所需的酶。在此,我们利用逆转录移动指示基因(RIG)并通过开发一种名为RIG-Seq的高通量基因组逆转录转座检测系统,表明松弛酶可刺激逆转录转座事件的频率和多样性。我们证明LtrB松弛酶不仅以序列和链特异性方式切割其同源oriT的单链DNA,而且还具有较弱的脱靶活性。总之,这些数据支持了一个模型,即两种不同的可移动元件,一种使用基于RNA的机制,另一种使用基于DNA的转移方式,确实会发生功能上的相互作用。内含子剪接促进了接合所需的松弛酶表达,而松弛酶会在受体DNA中引入错误切口,从而刺激内含子移动频率和事件密度。我们推测,可移动元件之间的这种功能相互作用将促进水平接合基因转移,同时刺激内含子在供体和受体细胞中的传播。