Suppr超能文献

移动细菌组 II 内含子是真核生物进化的关键。

Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution.

机构信息

Institute for Cellular Molecular Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712.

Department of Biological Sciences and RNA Institute, University at Albany, State University of New York, Albany, NY 12222.

出版信息

Microbiol Spectr. 2015 Feb;3(1):MDNA3-0050-2014. doi: 10.1128/microbiolspec.MDNA3-0050-2014.

Abstract

This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome's small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns.

摘要

这篇综述重点介绍了我们对 II 类内含子功能的最新认识的发展,这些内含子与反转录转座子和剪接体的关系,以及它们的共同特征如何启发人们思考细菌 II 类内含子作为真核进化关键要素的作用。本文还讨论了逆转录酶介导和宿主因子辅助的内含子反向转座途径,以及反转录转座机制向细菌中新的靶位转移,细菌中的 II 类内含子可能起源于此。通过靶向引发的逆转录进行 DNA 靶标识别和移动,推断出 II 类内含子、非 LTR 反转录转座子(如 LINE 元件)和端粒酶之间的进化关系。此外,II 类内含子几乎可以肯定是剪接体内含子的祖先。它们之间存在着深刻的相似性,包括延伸到 RNA 催化的剪接化学、反应立体化学以及在 RNA 活性位点执行催化作用的两个二价金属的位置。II 类内含子和剪接体的小核 RNA(snRNA)之间以及高度保守的核心剪接体蛋白 Prp8 和 II 类内含子样逆转录酶之间也存在序列和结构上的相似性。有人提出,II 类内含子是在细菌内共生或细菌-古菌融合期间进入真核生物的,在核基因组内大量增殖,从而需要进化出核膜,并发生断裂,产生剪接体内含子。因此,这些细菌自我剪接的移动元件从根本上影响了现存真核生物基因组的组成,包括人类基因组,其中大部分来自移动 II 类内含子的近亲。

相似文献

1
Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution.
Microbiol Spectr. 2015 Feb;3(1):MDNA3-0050-2014. doi: 10.1128/microbiolspec.MDNA3-0050-2014.
2
Bacterial group II introns generate genetic diversity by circularization and trans-splicing from a population of intron-invaded mRNAs.
PLoS Genet. 2018 Nov 21;14(11):e1007792. doi: 10.1371/journal.pgen.1007792. eCollection 2018 Nov.
3
Organellar maturases: A window into the evolution of the spliceosome.
Biochim Biophys Acta. 2015 Sep;1847(9):798-808. doi: 10.1016/j.bbabio.2015.01.009. Epub 2015 Jan 24.
4
Bacteria and Archaea Group II introns: additional mobile genetic elements in the environment.
Environ Microbiol. 2003 Mar;5(3):143-51. doi: 10.1046/j.1462-2920.2003.00398.x.
5
The mechanism of splicing as told by group II introns: Ancestors of the spliceosome.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194390. doi: 10.1016/j.bbagrm.2019.06.001. Epub 2019 Jun 13.
6
Mobile group II introns.
Annu Rev Genet. 2004;38:1-35. doi: 10.1146/annurev.genet.38.072902.091600.
7
Group II introns: versatile ribozymes and retroelements.
Wiley Interdiscip Rev RNA. 2016 May;7(3):341-55. doi: 10.1002/wrna.1339. Epub 2016 Feb 15.
8
Retrohoming of a Mobile Group II Intron in Human Cells Suggests How Eukaryotes Limit Group II Intron Proliferation.
PLoS Genet. 2015 Aug 4;11(8):e1005422. doi: 10.1371/journal.pgen.1005422. eCollection 2015 Aug.
10
Origin and evolution of spliceosomal introns.
Biol Direct. 2012 Apr 16;7:11. doi: 10.1186/1745-6150-7-11.

引用本文的文献

1
Characterization of two novel chia (Salvia hispanica L.) white and black genotypes via DNA barcoding, physiological, and agronomic traits.
J Genet Eng Biotechnol. 2025 Sep;23(3):100545. doi: 10.1016/j.jgeb.2025.100545. Epub 2025 Aug 19.
2
Presence of group II introns in phage genomes.
Nucleic Acids Res. 2025 Aug 11;53(15). doi: 10.1093/nar/gkaf761.
3
Structural basis for the evolution of a domesticated group II intron-like reverse transcriptase to function in host cell DNA repair.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2504208122. doi: 10.1073/pnas.2504208122. Epub 2025 Jul 29.
4
Prevalence of Group II Introns in Phage Genomes.
bioRxiv. 2025 May 23:2025.05.22.655115. doi: 10.1101/2025.05.22.655115.
7
Protein-free catalysis of DNA hydrolysis and self-integration by a ribozyme.
Nucleic Acids Res. 2025 Jan 11;53(2). doi: 10.1093/nar/gkae1224.
8
Pentatricopeptide repeat proteins in plants: Cellular functions, action mechanisms, and potential applications.
Plant Commun. 2025 Feb 10;6(2):101203. doi: 10.1016/j.xplc.2024.101203. Epub 2024 Dec 5.
10
Intron lariat spliceosomes convert lariats to true circles: implications for intron transposition.
Genes Dev. 2024 May 21;38(7-8):322-335. doi: 10.1101/gad.351764.124.

本文引用的文献

1
Integration, Regulation, and Long-Term Stability of R2 Retrotransposons.
Microbiol Spectr. 2015 Apr;3(2):MDNA3-0011-2014. doi: 10.1128/microbiolspec.MDNA3-0011-2014.
2
Diversity-generating Retroelements in Phage and Bacterial Genomes.
Microbiol Spectr. 2014 Dec;2(6). doi: 10.1128/microbiolspec.MDNA3-0029-2014.
3
Interaction between conjugative and retrotransposable elements in horizontal gene transfer.
PLoS Genet. 2014 Dec 4;10(12):e1004853. doi: 10.1371/journal.pgen.1004853. eCollection 2014 Dec.
4
Crystal structure of a eukaryotic group II intron lariat.
Nature. 2014 Oct 9;514(7521):193-7. doi: 10.1038/nature13790. Epub 2014 Sep 24.
5
Identification of RNA binding motifs in the R2 retrotransposon-encoded reverse transcriptase.
Nucleic Acids Res. 2014 Jul;42(13):8405-15. doi: 10.1093/nar/gku514. Epub 2014 Jun 23.
6
Origin of spliceosomal introns and alternative splicing.
Cold Spring Harb Perspect Biol. 2014 Jun 2;6(6):a016071. doi: 10.1101/cshperspect.a016071.
8
Repair of DNA double-strand breaks by templated nucleotide sequence insertions derived from distant regions of the genome.
Proc Natl Acad Sci U S A. 2014 May 27;111(21):7729-34. doi: 10.1073/pnas.1321889111. Epub 2014 May 12.
9
The trouble with (group II) introns.
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6536-7. doi: 10.1073/pnas.1405174111. Epub 2014 Apr 22.
10
Evidence for a group II intron-like catalytic triplex in the spliceosome.
Nat Struct Mol Biol. 2014 May;21(5):464-471. doi: 10.1038/nsmb.2815. Epub 2014 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验