Iglesias Juan Eugenio, Sabuncu Mert R
Basque Center on Cognition, Brain and Language (BCBL), Spain.
A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA.
Med Image Anal. 2015 Aug;24(1):205-219. doi: 10.1016/j.media.2015.06.012. Epub 2015 Jul 6.
Multi-atlas segmentation (MAS), first introduced and popularized by the pioneering work of Rohlfing, et al. (2004), Klein, et al. (2005), and Heckemann, et al. (2006), is becoming one of the most widely-used and successful image segmentation techniques in biomedical applications. By manipulating and utilizing the entire dataset of "atlases" (training images that have been previously labeled, e.g., manually by an expert), rather than some model-based average representation, MAS has the flexibility to better capture anatomical variation, thus offering superior segmentation accuracy. This benefit, however, typically comes at a high computational cost. Recent advancements in computer hardware and image processing software have been instrumental in addressing this challenge and facilitated the wide adoption of MAS. Today, MAS has come a long way and the approach includes a wide array of sophisticated algorithms that employ ideas from machine learning, probabilistic modeling, optimization, and computer vision, among other fields. This paper presents a survey of published MAS algorithms and studies that have applied these methods to various biomedical problems. In writing this survey, we have three distinct aims. Our primary goal is to document how MAS was originally conceived, later evolved, and now relates to alternative methods. Second, this paper is intended to be a detailed reference of past research activity in MAS, which now spans over a decade (2003-2014) and entails novel methodological developments and application-specific solutions. Finally, our goal is to also present a perspective on the future of MAS, which, we believe, will be one of the dominant approaches in biomedical image segmentation.
多图谱分割(MAS)最早由罗尔芬等人(2004年)、克莱因等人(2005年)以及赫克曼等人(2006年)的开创性工作引入并推广,正成为生物医学应用中使用最广泛且最成功的图像分割技术之一。通过处理和利用“图谱”的整个数据集(即先前已标注的训练图像,例如由专家手动标注),而非基于某些模型的平均表示,MAS能够灵活地更好捕捉解剖学变异,从而提供更高的分割精度。然而,这种优势通常伴随着高昂的计算成本。计算机硬件和图像处理软件的最新进展有助于应对这一挑战,并推动了MAS的广泛应用。如今,MAS已经取得了长足的发展,该方法包括一系列复杂的算法,这些算法采用了机器学习、概率建模、优化以及计算机视觉等领域的思想。本文对已发表的MAS算法以及将这些方法应用于各种生物医学问题的研究进行了综述。在撰写本综述时,我们有三个不同的目标。我们的主要目标是记录MAS最初是如何构思的,后来如何发展,以及现在与其他方法的关系。其次,本文旨在成为MAS过去研究活动的详细参考资料,MAS的研究现在已经跨越了十多年(2003 - 2014年),涉及新颖的方法发展和特定应用的解决方案。最后,我们的目标是对MAS的未来发展提出一种观点,我们认为,它将成为生物医学图像分割的主导方法之一。