Wang Rui, Perez-Riverol Yasset, Hermjakob Henning, Vizcaíno Juan Antonio
European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
Proteomics. 2015 Apr;15(8):1356-74. doi: 10.1002/pmic.201400377. Epub 2015 Feb 5.
Recent advances in high-throughput experimental techniques have led to an exponential increase in both the size and the complexity of the data sets commonly studied in biology. Data visualisation is increasingly used as the key to unlock this data, going from hypothesis generation to model evaluation and tool implementation. It is becoming more and more the heart of bioinformatics workflows, enabling scientists to reason and communicate more effectively. In parallel, there has been a corresponding trend towards the development of related software, which has triggered the maturation of different visualisation libraries and frameworks. For bioinformaticians, scientific programmers and software developers, the main challenge is to pick out the most fitting one(s) to create clear, meaningful and integrated data visualisation for their particular use cases. In this review, we introduce a collection of open source or free to use libraries and frameworks for creating data visualisation, covering the generation of a wide variety of charts and graphs. We will focus on software written in Java, JavaScript or Python. We truly believe this software offers the potential to turn tedious data into exciting visual stories.
高通量实验技术的最新进展使得生物学中常用数据集的规模和复杂性呈指数级增长。数据可视化越来越多地被用作解锁这些数据的关键,从假设生成到模型评估以及工具实施。它正日益成为生物信息学工作流程的核心,使科学家能够更有效地进行推理和交流。与此同时,相关软件的开发也呈现出相应的趋势,这引发了不同可视化库和框架的成熟。对于生物信息学家、科学程序员和软件开发人员来说,主要挑战是挑选出最适合的库和框架,以便为他们的特定用例创建清晰、有意义且集成的数据可视化。在本综述中,我们介绍了一系列用于创建数据可视化的开源或免费使用的库和框架,涵盖了各种图表的生成。我们将重点关注用Java、JavaScript或Python编写的软件。我们坚信这些软件有潜力将枯燥的数据转化为令人兴奋的可视化故事。