Suppr超能文献

基于随机森林的过氧化物酶和 RF-Prx 生物信息学分析:Prxs 的预测器和分类器

Bioinformatic Analyses of Peroxiredoxins and RF-Prx: A Random Forest-Based Predictor and Classifier for Prxs.

机构信息

Department of Computer Science, Jamoum University College, Umm Al-Qura University, Jamoum, Saudi Arabia.

Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, USA.

出版信息

Methods Mol Biol. 2022;2499:155-176. doi: 10.1007/978-1-0716-2317-6_8.

Abstract

Peroxiredoxins (Prxs) are a protein superfamily, present in all organisms, that play a critical role in protecting cellular macromolecules from oxidative damage but also regulate intracellular and intercellular signaling processes involving redox-regulated proteins and pathways. Bioinformatic approaches using computational tools that focus on active site-proximal sequence fragments (known as active site signatures) and iterative clustering and searching methods (referred to as TuLIP and MISST) have recently enabled the recognition of over 38,000 peroxiredoxins, as well as their classification into six functionally relevant groups. With these data providing so many examples of Prxs in each class, machine learning approaches offer an opportunity to extract additional information about features characteristic of these protein groups.In this study, we developed a novel computational method named "RF-Prx" based on a random forest (RF) approach integrated with K-space amino acid pairs (KSAAP) to identify peroxiredoxins and classify them into one of six subgroups. Our process performed in a superior manner compared to other machine learning classifiers. Thus the RF approach integrated with K-space amino acid pairs enabled the detection of class-specific conserved sequences outside the known functional centers and with potential importance. For example, drugs designed to target Prx proteins would likely suffer from cross-reactivity among distinct Prxs if targeted to conserved active sites, but this may be avoidable if remote, class-specific regions could be targeted instead.

摘要

过氧化物酶(Prxs)是一个蛋白质超家族,存在于所有生物中,它们在保护细胞大分子免受氧化损伤方面发挥着关键作用,但也调节涉及氧化还原调节蛋白和途径的细胞内和细胞间信号转导过程。使用专注于活性位点附近序列片段(称为活性位点特征)和迭代聚类及搜索方法(称为 TuLIP 和 MISST)的计算工具进行生物信息学方法,最近已经能够识别超过 38000 种过氧化物酶,并将其分类为六个具有功能相关性的组。由于这些数据在每个类别中提供了如此多的 Prx 示例,机器学习方法提供了一个机会,可以提取这些蛋白质组特征的其他信息。在这项研究中,我们开发了一种名为“RF-Prx”的新计算方法,该方法基于随机森林(RF)方法,结合 K-空间氨基酸对(KSAAP),用于识别过氧化物酶并将其分类为六个亚组之一。与其他机器学习分类器相比,我们的方法表现优越。因此,将 K-空间氨基酸对与随机森林方法集成,使我们能够检测到已知功能中心之外具有潜在重要性的类特异性保守序列。例如,如果针对保守的活性位点设计针对 Prx 蛋白的药物,那么针对不同的 Prx 可能会发生交叉反应,但如果可以针对远程的、特定于类的区域进行靶向,那么这种情况可能会避免。

相似文献

5
Variable overoxidation of peroxiredoxins in human lung cells in severe oxidative stress.严重氧化应激下人肺细胞中过氧化物酶的可变过度氧化
Am J Physiol Lung Cell Mol Physiol. 2005 May;288(5):L997-1001. doi: 10.1152/ajplung.00432.2004. Epub 2004 Dec 30.
7
Peroxiredoxins as biomarkers of oxidative stress.过氧化物酶作为氧化应激的生物标志物。
Biochim Biophys Acta. 2014 Feb;1840(2):906-12. doi: 10.1016/j.bbagen.2013.08.001. Epub 2013 Aug 9.
8
Novel hyperoxidation resistance motifs in 2-Cys peroxiredoxins.2-Cys 过氧化物酶中新型的超氧化抗性基序。
J Biol Chem. 2018 Jul 27;293(30):11901-11912. doi: 10.1074/jbc.RA117.001690. Epub 2018 Jun 8.

本文引用的文献

9
Urate hydroperoxide oxidizes human peroxiredoxin 1 and peroxiredoxin 2.尿酸过氧化氢可氧化人源1型和2型过氧化物酶。
J Biol Chem. 2017 May 26;292(21):8705-8715. doi: 10.1074/jbc.M116.767657. Epub 2017 Mar 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验