Suppr超能文献

脓毒症相关心脏功能障碍的病理生理学:由炎症、能量管理不当还是两者共同驱动?

Pathophysiology of sepsis-related cardiac dysfunction: driven by inflammation, energy mismanagement, or both?

作者信息

Drosatos Konstantinos, Lymperopoulos Anastasios, Kennel Peter Johannes, Pollak Nina, Schulze P Christian, Goldberg Ira J

机构信息

Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, 3500 N. Broad Street, MERB-951, Philadelphia, PA, 19140, USA,

出版信息

Curr Heart Fail Rep. 2015 Apr;12(2):130-40. doi: 10.1007/s11897-014-0247-z.

Abstract

Sepsis is a systemic inflammatory response that follows bacterial infection. Cardiac dysfunction is an important consequence of sepsis that affects mortality and has been attributed to either elevated inflammation or suppression of both fatty acid and glucose oxidation and eventual ATP depletion. Moreover, cardiac adrenergic signaling is compromised in septic patients and this aggravates further heart function. While anti-inflammatory therapies are important for the treatment of the disease, administration of anti-inflammatory drugs did not improve survival in septic patients. This review article summarizes findings on inflammatory and other mechanisms that are triggered in sepsis and affect cardiac function and mortality. Particularly, it focuses on the effects of the disease in metabolic pathways, as well as in adrenergic signaling and the potential interplay of the latter with inflammation. It is suggested that therapeutic approaches should include combination of anti-inflammatory treatments, stimulation of energy production, and restoration of adrenergic signaling in the heart.

摘要

脓毒症是一种继发于细菌感染后的全身炎症反应。心脏功能障碍是脓毒症的一个重要后果,它会影响死亡率,其原因要么是炎症加剧,要么是脂肪酸和葡萄糖氧化受到抑制以及最终的ATP耗竭。此外,脓毒症患者的心脏肾上腺素能信号传导受损,这会进一步加重心脏功能。虽然抗炎治疗对该疾病的治疗很重要,但给予抗炎药物并不能提高脓毒症患者的生存率。这篇综述文章总结了脓毒症中引发的、影响心脏功能和死亡率的炎症及其他机制的研究结果。特别地,它关注该疾病在代谢途径中的影响,以及在肾上腺素能信号传导方面的影响,以及后者与炎症之间潜在的相互作用。建议治疗方法应包括抗炎治疗、刺激能量产生以及恢复心脏肾上腺素能信号传导的联合应用。

相似文献

1
Pathophysiology of sepsis-related cardiac dysfunction: driven by inflammation, energy mismanagement, or both?
Curr Heart Fail Rep. 2015 Apr;12(2):130-40. doi: 10.1007/s11897-014-0247-z.
2
Mechanisms of sepsis-induced cardiac dysfunction.
Crit Care Med. 2007 Jun;35(6):1599-608. doi: 10.1097/01.CCM.0000266683.64081.02.
3
Cardiac dysfunction, mitochondrial architecture, energy production, and inflammatory pathways: Interrelated aspects in endotoxemia and sepsis.
Int J Biochem Cell Biol. 2016 Dec;81(Pt B):307-314. doi: 10.1016/j.biocel.2016.07.032. Epub 2016 Jul 28.
4
[Heart in sepsis : Molecular mechanisms, diagnosis and therapy of septic cardiomyopathy].
Anaesthesist. 2017 Jul;66(7):479-490. doi: 10.1007/s00101-017-0329-x.
5
The heart in sepsis: from basic mechanisms to clinical management.
Curr Vasc Pharmacol. 2013 Mar 1;11(2):187-95.
6
Cardiac dysfunction in critical illness.
Curr Opin Anaesthesiol. 2018 Apr;31(2):158-164. doi: 10.1097/ACO.0000000000000572.
8
The Septic Heart: Current Understanding of Molecular Mechanisms and Clinical Implications.
Chest. 2019 Feb;155(2):427-437. doi: 10.1016/j.chest.2018.08.1037. Epub 2018 Aug 29.
9
Sepsis and septic shock: pathophysiological and cardiovascular background as basis for therapy.
Acta Clin Belg. 2010 Sep-Oct;65(5):323-9. doi: 10.1179/acb.2010.070.
10
Hemodynamic and metabolic effects of selective beta1 adrenergic blockade during sepsis.
Surgery. 2006 May;139(5):686-94. doi: 10.1016/j.surg.2005.10.010.

引用本文的文献

1
Interaction between post-tumor inflammation and vascular smooth muscle cell dysfunction in sepsis-induced cardiomyopathy.
Front Immunol. 2025 Apr 10;16:1560717. doi: 10.3389/fimmu.2025.1560717. eCollection 2025.
2
MicroRNAs as regulators of cardiac dysfunction in sepsis: pathogenesis and diagnostic potential.
Front Cardiovasc Med. 2025 Feb 18;12:1517323. doi: 10.3389/fcvm.2025.1517323. eCollection 2025.
4
Septic cardiomyopathy or myocardial infarction?: A case report of septic shock with ST-segment elevation on ECG.
Medicine (Baltimore). 2025 Jan 31;104(5):e41454. doi: 10.1097/MD.0000000000041454.
6
Immunopharmacological Insights into spp.: Harnessing Therapeutic Potential for Sepsis.
Curr Pharm Des. 2025;31(11):823-842. doi: 10.2174/0113816128326301240920040036.
8
Acute exposure to LPS induces cardiac dysfunction via the activation of the NLRP3 inflammasome.
Sci Rep. 2024 Oct 17;14(1):24378. doi: 10.1038/s41598-024-76066-w.

本文引用的文献

1
Effects of levosimendan on mitochondrial function in patients with septic shock: a randomized trial.
Biochimie. 2014 Jul;102:166-73. doi: 10.1016/j.biochi.2014.03.006. Epub 2014 Mar 19.
2
Inhibition of sepsis-induced inflammatory response by β1-adrenergic antagonists.
J Trauma Acute Care Surg. 2014 Feb;76(2):320-7; discussion 327-8. doi: 10.1097/TA.0000000000000113.
3
Characterization of cardiac dysfunction in sepsis: an ongoing challenge.
Shock. 2014 Jan;41(1):12-24. doi: 10.1097/SHK.0000000000000065.
4
Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy.
Nat Rev Immunol. 2013 Dec;13(12):862-74. doi: 10.1038/nri3552. Epub 2013 Nov 15.
5
Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction.
Autophagy. 2013 Nov 1;9(11):1837-51. doi: 10.4161/auto.26502. Epub 2013 Oct 3.
7
Is there a role for β-blockade in septic shock?
JAMA. 2013 Oct 23;310(16):1677-8. doi: 10.1001/jama.2013.278478.
9
An integrated clinico-metabolomic model improves prediction of death in sepsis.
Sci Transl Med. 2013 Jul 24;5(195):195ra95. doi: 10.1126/scitranslmed.3005893.
10
Cytokines in sepsis: potent immunoregulators and potential therapeutic targets--an updated view.
Mediators Inflamm. 2013;2013:165974. doi: 10.1155/2013/165974. Epub 2013 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验