Suppr超能文献

人类氨酰-tRNA合成酶中疾病相关突变的进化与结构注释

Evolutionary and structural annotation of disease-associated mutations in human aminoacyl-tRNA synthetases.

作者信息

Datt Manish, Sharma Amit

机构信息

Structural and Computational Biology group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India.

出版信息

BMC Genomics. 2014 Dec 4;15(1):1063. doi: 10.1186/1471-2164-15-1063.

Abstract

BACKGROUND

Mutation(s) in proteins are a natural byproduct of evolution but can also cause serious diseases. Aminoacyl-tRNA synthetases (aaRSs) are indispensable components of all cellular protein translational machineries, and in humans they drive translation in both cytoplasm and mitochondria. Mutations in aaRSs have been implicated in a plethora of diseases including neurological conditions, metabolic disorders and cancer.

RESULTS

We have developed an algorithmic approach for genome-wide analyses of sequence substitutions that combines evolutionary, structural and functional information. This pipeline enabled us to super-annotate human aaRS mutations and analyze their linkage to health disorders. Our data suggest that in some but not all cases, aaRS mutations occur in functional and structural sectors where they can manifest their pathological effects by altering enzyme activity or causing structural instability. Further, mutations appear in both solvent exposed and buried regions of aaRSs indicating that these alterations could lead to dysfunctional enzymes resulting in abnormal protein translation routines by affecting inter-molecular interactions or by disruption of non-bonded interactions. Overall, the prevalence of mutations is much higher in mitochondrial aaRSs, and the two most often mutated aaRSs are mitochondrial glutamyl-tRNA synthetase and dual localized glycyl-tRNA synthetase. Out of 63 mutations annotated in this work, only 12 (20%) were observed in regions that could directly affect aminoacylation activity via either binding to ATP/amino-acid, tRNA or by involvement in dimerization. Mutations in structural cores or at potential biomolecular interfaces account for ~55% mutations while remaining mutations (25%) remain structurally un-annotated.

CONCLUSION

This work provides a comprehensive structural framework within which most defective human aaRSs have been structurally analyzed. The methodology described here could be employed to annotate mutations in other protein families in a high-throughput manner.

摘要

背景

蛋白质中的突变是进化的自然副产物,但也可能引发严重疾病。氨酰 - tRNA合成酶(aaRSs)是所有细胞蛋白质翻译机制中不可或缺的组成部分,在人类细胞中,它们驱动细胞质和线粒体中的翻译过程。aaRSs的突变与多种疾病有关,包括神经系统疾病、代谢紊乱和癌症。

结果

我们开发了一种算法方法,用于对序列替换进行全基因组分析,该方法结合了进化、结构和功能信息。此流程使我们能够对人类aaRS突变进行超级注释,并分析它们与健康障碍的关联。我们的数据表明,在某些但并非所有情况下,aaRS突变发生在功能和结构区域,它们可通过改变酶活性或导致结构不稳定来表现其病理效应。此外,突变出现在aaRSs的溶剂暴露区域和埋藏区域,这表明这些改变可能导致酶功能失调,通过影响分子间相互作用或破坏非键相互作用而导致异常的蛋白质翻译过程。总体而言,线粒体aaRSs中的突变发生率要高得多,最常发生突变的两种aaRSs是线粒体谷氨酰胺 - tRNA合成酶和双定位甘氨酰胺 - tRNA合成酶。在本研究注释的63个突变中,只有12个(约20%)出现在可通过与ATP/氨基酸、tRNA结合或参与二聚化直接影响氨酰化活性的区域。结构核心或潜在生物分子界面的突变约占突变总数的55%,而其余突变(约25%)在结构上仍未注释。

结论

这项工作提供了一个全面的结构框架,在其中对大多数有缺陷的人类aaRSs进行了结构分析。这里描述的方法可用于高通量注释其他蛋白质家族中的突变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/317b/4298046/ddec99c22aff/12864_2014_6929_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验