Suppr超能文献

通过生物材料介导的伤口界面基质重编程修复致密结缔组织。

Repair of dense connective tissues via biomaterial-mediated matrix reprogramming of the wound interface.

作者信息

Qu Feini, Pintauro Michael P, Haughan Joanne E, Henning Elizabeth A, Esterhai John L, Schaer Thomas P, Mauck Robert L, Fisher Matthew B

机构信息

McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center, Philadelphia Veterans Administration Medical Center, Philadelphia, PA 19104, USA; Comparative Orthopaedic Research Laboratory, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA.

McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center, Philadelphia Veterans Administration Medical Center, Philadelphia, PA 19104, USA.

出版信息

Biomaterials. 2015 Jan;39:85-94. doi: 10.1016/j.biomaterials.2014.10.067. Epub 2014 Nov 15.

Abstract

Repair of dense connective tissues in adults is limited by their intrinsic hypocellularity and is exacerbated by a dense extracellular matrix (ECM) that impedes cellular migration to and local proliferation at the wound site. Conversely, healing in fetal tissues occurs due in part to an environment conducive to cell mobility and division. Here, we investigated whether the application of a degradative enzyme, collagenase, could reprogram the adult wound margin to a more fetal-like state, and thus abrogate the biophysical impediments that hinder migration and proliferation. We tested this concept using the knee meniscus, a commonly injured structure for which few regenerative approaches exist. To focus delivery and degradation to the wound interface, we developed a system in which collagenase was stored inside poly(ethylene oxide) (PEO) electrospun nanofibers and released upon hydration. Through a series of in vitro and in vivo studies, our findings show that partial digestion of the wound interface improves repair by creating a more compliant and porous microenvironment that expedites cell migration to and/or proliferation at the wound margin. This innovative approach of targeted manipulation of the wound interface, focused on removing the naturally occurring barriers to adult tissue repair, may find widespread application in the treatment of injuries to a variety of dense connective tissues.

摘要

成人致密结缔组织的修复受到其内在细胞稀少的限制,而致密的细胞外基质(ECM)会加剧这种限制,因为这种基质会阻碍细胞向伤口部位迁移以及在伤口部位的局部增殖。相反,胎儿组织的愈合部分归因于有利于细胞移动和分裂的环境。在此,我们研究了应用降解酶胶原酶是否可以将成人伤口边缘重编程为更类似胎儿的状态,从而消除阻碍迁移和增殖的生物物理障碍。我们使用膝关节半月板测试了这一概念,膝关节半月板是一种常见的受伤结构,目前几乎没有再生方法。为了将递送和降解集中在伤口界面,我们开发了一种系统,其中胶原酶储存在聚环氧乙烷(PEO)电纺纳米纤维内部,并在水合作用下释放。通过一系列体外和体内研究,我们的研究结果表明,对伤口界面进行部分消化可通过创造一个更柔顺且多孔的微环境来改善修复,该微环境可加速细胞向伤口边缘迁移和/或在伤口边缘增殖。这种针对伤口界面进行靶向操纵的创新方法,专注于消除成人组织修复中自然存在的障碍,可能会在各种致密结缔组织损伤的治疗中得到广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8ba/4258004/ef2d556cd000/nihms-638472-f0001.jpg

相似文献

引用本文的文献

2
Multi-material electrospinning: from methods to biomedical applications.多材料静电纺丝:从方法到生物医学应用
Mater Today Bio. 2023 Jun 23;21:100710. doi: 10.1016/j.mtbio.2023.100710. eCollection 2023 Aug.
7
A review of strategies for development of tissue engineered meniscal implants.组织工程半月板植入物的开发策略综述。
Biomater Biosyst. 2021 Aug 26;4:100026. doi: 10.1016/j.bbiosy.2021.100026. eCollection 2021 Dec.
8
Impediments to Meniscal Repair: Factors at Play Beyond Vascularity.半月板修复的阻碍:血管化之外的影响因素
Front Bioeng Biotechnol. 2022 Mar 1;10:843166. doi: 10.3389/fbioe.2022.843166. eCollection 2022.
9
Six-Month Outcomes of Clinically Relevant Meniscal Injury in a Large-Animal Model.大型动物模型中临床相关半月板损伤的六个月结果
Orthop J Sports Med. 2021 Nov 12;9(11):23259671211035444. doi: 10.1177/23259671211035444. eCollection 2021 Nov.
10

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验