Suppr超能文献

芒果姜的热风干燥特性:通过数学建模和人工神经网络预测干燥动力学

Hot air drying characteristics of mango ginger: Prediction of drying kinetics by mathematical modeling and artificial neural network.

作者信息

Murthy Thirupathihalli Pandurangappa Krishna, Manohar Balaraman

机构信息

Department of Food Engineering, CSIR - Central Food Technological Research Institute, Mysore, 570020 India.

出版信息

J Food Sci Technol. 2014 Dec;51(12):3712-21. doi: 10.1007/s13197-013-0941-y. Epub 2013 Feb 5.

Abstract

Mango ginger (Curcuma amada) was dried in a through-flow dryer system at different temperatures (40-70 °C) and air velocities (0.84 - 2.25 m/s) to determine the effect of drying on drying rate and effective diffusivity. As the temperature and air velocity increased, drying time significantly decreased. Among the ten different thin layer drying models considered to determine the kinetic drying parameters, semi empirical Midilli et al., model gave the best fit for all drying conditions. Effective moisture diffusivity varied from 3.7 × 10(-10) m(2)/s to 12.5 × 10(-10) m(2)/s over the temperature and air velocity range of study. Effective moisture diffusivity regressed well with Arrhenius model and activation energy of the model was found to be 32.6 kJ/mol. Artificial neural network modeling was also employed to predict the drying behaviour and found suitable to describe the drying kinetics with very high correlation coefficient of 0.998.

摘要

芒果姜(莪术)在穿流式干燥系统中于不同温度(40 - 70°C)和风速(0.84 - 2.25米/秒)下进行干燥,以确定干燥对干燥速率和有效扩散系数的影响。随着温度和风速的增加,干燥时间显著减少。在用于确定动力学干燥参数的十种不同薄层干燥模型中,半经验的米迪利等人的模型在所有干燥条件下拟合效果最佳。在研究的温度和风速范围内,有效水分扩散系数在3.7×10⁻¹⁰ 米²/秒至12.5×10⁻¹⁰ 米²/秒之间变化。有效水分扩散系数与阿伦尼乌斯模型回归良好,该模型的活化能为32.6千焦/摩尔。还采用了人工神经网络建模来预测干燥行为,发现其适合描述干燥动力学,相关系数高达0.998。

相似文献

1
Hot air drying characteristics of mango ginger: Prediction of drying kinetics by mathematical modeling and artificial neural network.
J Food Sci Technol. 2014 Dec;51(12):3712-21. doi: 10.1007/s13197-013-0941-y. Epub 2013 Feb 5.
2
Thin-layer modeling of convective and microwave-convective drying of oyster mushroom (Pleurotus ostreatus).
J Food Sci Technol. 2015 Apr;52(4):2013-22. doi: 10.1007/s13197-013-1209-2. Epub 2013 Nov 29.
3
Mathematical modeling on vacuum drying of Zizyphus jujuba Miller slices.
J Food Sci Technol. 2013 Feb;50(1):115-21. doi: 10.1007/s13197-011-0312-5. Epub 2011 Feb 11.
5
Thin layer convective air drying of wild edible plant (Allium roseum) leaves: experimental kinetics, modeling and quality.
J Food Sci Technol. 2015 Jun;52(6):3739-49. doi: 10.1007/s13197-014-1435-2. Epub 2014 Jun 13.
7
Prediction kinetic, energy and exergy of quince under hot air dryer using ANNs and ANFIS.
Food Sci Nutr. 2019 Dec 12;8(1):594-611. doi: 10.1002/fsn3.1347. eCollection 2020 Jan.
10
Modelling of nectarine drying under near infrared - Vacuum conditions.
Acta Sci Pol Technol Aliment. 2015 Jan-Mar;14(1):15-27. doi: 10.17306/J.AFS.2015.1.2.

引用本文的文献

2
Drying Strawberry Slices: A Comparative Study of Electrohydrodynamic, Hot Air, and Electrohydrodynamic-Hot Air Techniques.
Food Sci Nutr. 2024 Oct 20;12(11):9621-9631. doi: 10.1002/fsn3.4541. eCollection 2024 Nov.
3
Integrated drying model of lychee as a function of temperature and relative humidity.
Heliyon. 2024 Mar 26;10(7):e28590. doi: 10.1016/j.heliyon.2024.e28590. eCollection 2024 Apr 15.
4
Hot Air Impingement Drying Enhanced Drying Characteristics and Quality Attributes of .
Foods. 2023 Mar 29;12(7):1441. doi: 10.3390/foods12071441.
5
Application of artificial neural network for the quality-based classification of spray-dried rhubarb juice powders.
J Food Sci Technol. 2023 Mar;60(3):809-819. doi: 10.1007/s13197-020-04537-9. Epub 2020 May 30.
6
Evaluation of processing mechanism in Astragali Radix by low-field nuclear magnetic resonance and magnetic resonance imaging.
PLoS One. 2022 Mar 14;17(3):e0265383. doi: 10.1371/journal.pone.0265383. eCollection 2022.
8
The kinetics of thin-layer drying and modelling for mango slices and the influence of differing hot-air drying methods on quality.
Heliyon. 2021 May 31;7(6):e07182. doi: 10.1016/j.heliyon.2021.e07182. eCollection 2021 Jun.
9
Comparative study of hot air and vacuum drying on the drying kinetics and physicochemical properties of chicory roots.
J Food Sci Technol. 2018 Oct;55(10):4067-4078. doi: 10.1007/s13197-018-3333-5. Epub 2018 Jul 18.
10
Kinetics and Quality of Microwave-Assisted Drying of Mango (Mangifera indica).
Int J Food Sci. 2016;2016:2037029. doi: 10.1155/2016/2037029. Epub 2016 Jan 3.

本文引用的文献

2
Identification of difurocumenonol, a new antimicrobial compound from mango ginger (Curcuma amada Roxb.) rhizome.
J Appl Microbiol. 2007 Jun;102(6):1594-602. doi: 10.1111/j.1365-2672.2006.03186.x.
3
Total phenol, antioxidant and free radical scavenging activities of some medicinal plants.
Int J Food Sci Nutr. 2007 Feb;58(1):18-28. doi: 10.1080/09637480601093269.
4
Isolation and characterization of antioxidant and antibacterial compound from mango ginger (Curcuma amada Roxb.) rhizome.
J Chromatogr B Analyt Technol Biomed Life Sci. 2007 Jun 1;852(1-2):40-8. doi: 10.1016/j.jchromb.2006.12.036. Epub 2007 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验