Przybył K, Gawałek J, Koszela K
Food Engineering Group, Institute of Food Technology of Plant Origin, Food Sciences and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31/33, 60-624 Poznan, Poland.
Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 50, 60-625 Poznan, Poland.
J Food Sci Technol. 2023 Mar;60(3):809-819. doi: 10.1007/s13197-020-04537-9. Epub 2020 May 30.
The aim of the study was to develop a neural model enabling classification of fruit spray dried powders, on the basis of graphic data acquired from a bitmap received in the process of spray drying. The neural model was developed with multi-layer perceptron topology. Input variables were expressed in 46 image descriptors based on RGB, YCbCr, HSV (B) and HSL models. Sensitivity analysis of input variables and principal component analysis determined the significance level of each attribute. The optimal model with the lowest error value root mean square, at the level of 0.04 contained 46 neurons in the input layer, 11 neurons in the hidden layer, 10 neurons in the output layer. The results allowed to show that dyeing force (color features) had influence on effective differentiation of the research material consisting of spray-dried powders of rhubarb juice with various dried juice content levels: 30, 40 and 50% as well as high ("H") and low ("L") level of saccharification a chosen carrier (potato maltodextrin).
本研究的目的是基于喷雾干燥过程中接收到的位图获取的图形数据,开发一种能够对水果喷雾干燥粉末进行分类的神经模型。该神经模型采用多层感知器拓扑结构进行开发。输入变量基于RGB、YCbCr、HSV(B)和HSL模型,用46个图像描述符表示。对输入变量进行敏感性分析和主成分分析,确定了每个属性的显著性水平。误差值均方根最低的最优模型,在0.04的水平下,输入层包含46个神经元,隐藏层包含11个神经元,输出层包含10个神经元。结果表明,染色力(颜色特征)对由不同干汁含量水平(30%、40%和50%)的大黄汁喷雾干燥粉末以及所选载体(马铃薯麦芽糊精)的高(“H”)和低(“L”)糖化水平组成的研究材料的有效区分有影响。