Morris E Kathryn, Caruso Tancredi, Buscot François, Fischer Markus, Hancock Christine, Maier Tanja S, Meiners Torsten, Müller Caroline, Obermaier Elisabeth, Prati Daniel, Socher Stephanie A, Sonnemann Ilja, Wäschke Nicole, Wubet Tesfaye, Wurst Susanne, Rillig Matthias C
Institute of Biology, Dahlem Center of Plant Sciences, Freie Universität Berlin Altensteinstr 6, Berlin, 14195, Germany ; Department of Biology, Xavier University 3800 Victory Parkway, Cincinnati, Ohio, 45207.
School of Biological Sciences, Queen's University Belfast 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland.
Ecol Evol. 2014 Sep;4(18):3514-24. doi: 10.1002/ece3.1155. Epub 2014 Aug 28.
Biodiversity, a multidimensional property of natural systems, is difficult to quantify partly because of the multitude of indices proposed for this purpose. Indices aim to describe general properties of communities that allow us to compare different regions, taxa, and trophic levels. Therefore, they are of fundamental importance for environmental monitoring and conservation, although there is no consensus about which indices are more appropriate and informative. We tested several common diversity indices in a range of simple to complex statistical analyses in order to determine whether some were better suited for certain analyses than others. We used data collected around the focal plant Plantago lanceolata on 60 temperate grassland plots embedded in an agricultural landscape to explore relationships between the common diversity indices of species richness (S), Shannon's diversity (H'), Simpson's diversity (D1), Simpson's dominance (D2), Simpson's evenness (E), and Berger-Parker dominance (BP). We calculated each of these indices for herbaceous plants, arbuscular mycorrhizal fungi, aboveground arthropods, belowground insect larvae, and P. lanceolata molecular and chemical diversity. Including these trait-based measures of diversity allowed us to test whether or not they behaved similarly to the better studied species diversity. We used path analysis to determine whether compound indices detected more relationships between diversities of different organisms and traits than more basic indices. In the path models, more paths were significant when using H', even though all models except that with E were equally reliable. This demonstrates that while common diversity indices may appear interchangeable in simple analyses, when considering complex interactions, the choice of index can profoundly alter the interpretation of results. Data mining in order to identify the index producing the most significant results should be avoided, but simultaneously considering analyses using multiple indices can provide greater insight into the interactions in a system.
生物多样性是自然系统的一个多维度属性,部分由于为此目的提出的众多指数而难以量化。指数旨在描述群落的一般属性,使我们能够比较不同的区域、分类群和营养级。因此,它们对于环境监测和保护至关重要,尽管对于哪些指数更合适且信息丰富尚无共识。我们在一系列从简单到复杂的统计分析中测试了几种常见的多样性指数,以确定某些指数是否比其他指数更适合特定分析。我们使用在农业景观中60个温带草地样地周围收集的、围绕焦点植物披针叶车前的数据,来探究物种丰富度(S)、香农多样性(H')、辛普森多样性(D1)、辛普森优势度(D2)、辛普森均匀度(E)和伯杰 - 帕克优势度(BP)等常见多样性指数之间的关系。我们针对草本植物、丛枝菌根真菌、地上节肢动物、地下昆虫幼虫以及披针叶车前的分子和化学多样性计算了这些指数中的每一个。纳入这些基于性状的多样性测度使我们能够测试它们的表现是否与研究更充分的物种多样性相似。我们使用路径分析来确定复合指数是否比更基本的指数检测到不同生物体和性状多样性之间更多的关系。在路径模型中,使用H'时更多路径是显著的,尽管除了与E相关的模型外,所有模型同样可靠。这表明,虽然在简单分析中常见多样性指数可能看起来可以互换,但在考虑复杂相互作用时,指数的选择会深刻改变结果的解释。应避免为确定产生最显著结果的指数而进行数据挖掘,但同时考虑使用多个指数进行分析可以更深入地洞察系统中的相互作用。