Suppr超能文献

自然和人工耳道内的声压分布:正向刺激

Sound pressure distribution within natural and artificial human ear canals: forward stimulation.

作者信息

Ravicz Michael E, Tao Cheng Jeffrey, Rosowski John J

机构信息

Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, Massachusetts 02114.

出版信息

J Acoust Soc Am. 2014 Dec;136(6):3132. doi: 10.1121/1.4898420.

Abstract

This work is part of a study of the interaction of sound pressure in the ear canal (EC) with tympanic membrane (TM) surface displacement. Sound pressures were measured with 0.5-2 mm spacing at three locations within the shortened natural EC or an artificial EC in human temporal bones: near the TM surface, within the tympanic ring plane, and in a plane transverse to the long axis of the EC. Sound pressure was also measured at 2-mm intervals along the long EC axis. The sound field is described well by the size and direction of planar sound pressure gradients, the location and orientation of standing-wave nodal lines, and the location of longitudinal standing waves along the EC axis. Standing-wave nodal lines perpendicular to the long EC axis are present on the TM surface >11-16 kHz in the natural or artificial EC. The range of sound pressures was larger in the tympanic ring plane than at the TM surface or in the transverse EC plane. Longitudinal standing-wave patterns were stretched. The tympanic-ring sound field is a useful approximation of the TM sound field, and the artificial EC approximates the natural EC.

摘要

这项工作是关于耳道(EC)内声压与鼓膜(TM)表面位移相互作用研究的一部分。在人类颞骨中缩短的自然耳道或人工耳道内的三个位置,以0.5 - 2毫米的间距测量声压:靠近鼓膜表面、在鼓膜环平面内以及在与耳道长轴垂直的平面内。还沿耳道长轴以2毫米的间隔测量声压。声场可以通过平面声压梯度的大小和方向、驻波节点线的位置和方向以及沿耳道轴的纵向驻波的位置来很好地描述。在自然或人工耳道中,鼓膜表面>11 - 16千赫兹处存在垂直于耳道长轴的驻波节点线。鼓膜环平面内的声压范围比鼓膜表面或耳道横向平面内的声压范围更大。纵向驻波模式被拉长。鼓膜环声场是鼓膜声场的一个有用近似,并且人工耳道近似于自然耳道。

相似文献

2
Sound pressure distribution within human ear canals: II. Reverse mechanical stimulation.
J Acoust Soc Am. 2019 Mar;145(3):1569. doi: 10.1121/1.5094776.
3
The Effect of Ear Canal Orientation on Tympanic Membrane Motion and the Sound Field Near the Tympanic Membrane.
J Assoc Res Otolaryngol. 2015 Aug;16(4):413-32. doi: 10.1007/s10162-015-0516-x. Epub 2015 Apr 25.
4
Sound pressure distribution and power flow within the gerbil ear canal from 100 Hz to 80 kHz.
J Acoust Soc Am. 2007 Oct;122(4):2154-73. doi: 10.1121/1.2769625.
7
External and middle ear sound pressure distribution and acoustic coupling to the tympanic membrane.
J Acoust Soc Am. 2014 Mar;135(3):1294-312. doi: 10.1121/1.4864475.
10
Factors contributing to bone conduction: the outer ear.
J Acoust Soc Am. 2003 Feb;113(2):902-13. doi: 10.1121/1.1534606.

引用本文的文献

1
Shape and sound analyses of the human ear-canal geometrya).
J Acoust Soc Am. 2025 May 1;157(5):3638-3654. doi: 10.1121/10.0036648.
5
Sound pressure distribution within human ear canals: II. Reverse mechanical stimulation.
J Acoust Soc Am. 2019 Mar;145(3):1569. doi: 10.1121/1.5094776.
6
Tympanic membrane surface motions in forward and reverse middle ear transmissions.
J Acoust Soc Am. 2019 Jan;145(1):272. doi: 10.1121/1.5087134.
7
Finite-Element Modelling of the Acoustic Input Admittance of the Newborn Ear Canal and Middle Ear.
J Assoc Res Otolaryngol. 2017 Feb;18(1):25-48. doi: 10.1007/s10162-016-0587-3. Epub 2016 Oct 7.
8
Transaural experiments and a revised duplex theory for the localization of low-frequency tones.
J Acoust Soc Am. 2016 Feb;139(2):968-85. doi: 10.1121/1.4941915.
9
Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results.
Hear Res. 2016 Oct;340:15-24. doi: 10.1016/j.heares.2016.01.019. Epub 2016 Feb 12.

本文引用的文献

1
External and middle ear sound pressure distribution and acoustic coupling to the tympanic membrane.
J Acoust Soc Am. 2014 Mar;135(3):1294-312. doi: 10.1121/1.4864475.
2
Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles.
Hear Res. 2013 Oct;304:49-56. doi: 10.1016/j.heares.2013.06.006. Epub 2013 Jun 28.
5
Motion of the surface of the human tympanic membrane measured with stroboscopic holography.
Hear Res. 2010 May;263(1-2):66-77. doi: 10.1016/j.heares.2009.12.024. Epub 2009 Dec 23.
7
Measurements of stapes velocity in live human ears.
Hear Res. 2009 Mar;249(1-2):54-61. doi: 10.1016/j.heares.2008.11.011. Epub 2008 Dec 11.
8
Sound pressure distribution and power flow within the gerbil ear canal from 100 Hz to 80 kHz.
J Acoust Soc Am. 2007 Oct;122(4):2154-73. doi: 10.1121/1.2769625.
9
Testing a method for quantifying the output of implantable middle ear hearing devices.
Audiol Neurootol. 2007;12(4):265-76. doi: 10.1159/000101474. Epub 2007 Apr 2.
10
The effect of methodological differences in the measurement of stapes motion in live and cadaver ears.
Audiol Neurootol. 2006;11(3):183-97. doi: 10.1159/000091815. Epub 2006 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验