文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过金纳米粒子等离子体能量转移实现具有增强灵敏度的条件激活光学造影剂:可行性研究

Conditionally activating optical contrast agent with enhanced sensitivity via gold nanoparticle plasmon energy transfer: feasibility study.

作者信息

Kang Kyung Aih, Wang Jianting

机构信息

Department of Chemical Engineering, University of Louisville, Louisville, KY, 40292, USA.

Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, 20993, USA.

出版信息

J Nanobiotechnology. 2014 Dec 7;12:56. doi: 10.1186/s12951-014-0056-2.


DOI:10.1186/s12951-014-0056-2
PMID:25481683
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4267155/
Abstract

BACKGROUND: Molecular sensing/imaging utilizing fluorophores has been one of the most frequently used techniques in biomedical research. As for any molecular imaging techniques, fluorescence mediated sensing always seeks for greater specificity and sensitivity. Since fluorophores emit fluorescence while their electron energy state changes, manipulating the local electromagnetic field around the fluorophores may be a way to enhance the specificity and sensitivity. Gold nanoparticles (GNPs) are known to form a very strong electromagnetic field on their surface [i.e., surface plasmon field (SPF)], upon receiving photonic energy. The level of fluorescence change by GNP-SPF may range from complete quenching to extensive enhancement, depending upon the SPF strength, excitation and emission wavelengths, and quantum yield of the fluorophore. METHOD: Here, we report a novel design that utilizes BOTH fluorescence quenching and enhancement abilities of the GNP in one single nano-entity, providing high specificity and sensitivity. The construct utilizes a specially designed molecular dual-spacer that places the fluorphore at the location with an appropriate GNP-SFP strength before and after exposed to the biomarker. A model system to test the concept was an optical signal mediator activated by urokinase-type plasminogen activator (uPA; breast cancer secreting enzyme). RESULTS: The resulting contrast agent shows less than 10% of the natural fluorescence but, in the presence of uPA, its fluorescence emission is triggered and emits its fluorescence approximately twice of the natural form. CONCLUSION: This study demonstrated that our novel design of an optical contrast agent can be conditionally activated with enhanced sensitivity, using both quenching and enhancement phenomena of fluorophores in the electromagnetic field of the appropriate strengths (in this case, locally generated by the GNP-SPF). This entity is similar to molecular beacon in terms of specificity but with greater sensitivity. In addition, it is not restricted to only DNA or RNA sensing but for any designs that cause the change in the distance between the fluorophore and GNP, upon the time of encountering biomarker of interest.

摘要

背景:利用荧光团的分子传感/成像一直是生物医学研究中最常用的技术之一。对于任何分子成像技术而言,荧光介导的传感始终追求更高的特异性和灵敏度。由于荧光团在其电子能态变化时会发出荧光,因此操纵荧光团周围的局部电磁场可能是提高特异性和灵敏度的一种方法。已知金纳米颗粒(GNP)在接收光子能量后会在其表面形成非常强的电磁场[即表面等离子体场(SPF)]。GNP-SPF引起的荧光变化程度可能从完全淬灭到大幅增强不等,这取决于SPF强度、激发和发射波长以及荧光团的量子产率。 方法:在此,我们报告了一种新颖的设计,该设计在单个纳米实体中同时利用了GNP的荧光淬灭和增强能力,从而提供了高特异性和灵敏度。该构建体利用了一种特殊设计的分子双间隔物,该间隔物在暴露于生物标志物之前和之后将荧光团置于具有适当GNP-SFP强度的位置。一个测试该概念的模型系统是由尿激酶型纤溶酶原激活剂(uPA;乳腺癌分泌酶)激活的光信号介质。 结果:所得造影剂显示出的天然荧光不到10%,但在存在uPA的情况下,其荧光发射被触发,发出的荧光约为天然形式的两倍。 结论:本研究表明,我们新型的光学造影剂设计可以通过利用适当强度(在这种情况下,由GNP-SPF局部产生)的电磁场中荧光团的淬灭和增强现象,以增强的灵敏度进行条件激活。该实体在特异性方面与分子信标相似,但具有更高的灵敏度。此外,它不仅限于DNA或RNA传感,还适用于任何在遇到感兴趣的生物标志物时导致荧光团与GNP之间距离发生变化的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/ce27ddef679d/12951_2014_56_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/699523593e9f/12951_2014_56_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/d8c8888c27dc/12951_2014_56_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/09270e3995d9/12951_2014_56_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/5f2851b119e8/12951_2014_56_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/227a6b5dd7a2/12951_2014_56_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/4b4bbf865bdb/12951_2014_56_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/4ca12c8ba661/12951_2014_56_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/cf6186746191/12951_2014_56_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/ce27ddef679d/12951_2014_56_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/699523593e9f/12951_2014_56_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/d8c8888c27dc/12951_2014_56_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/09270e3995d9/12951_2014_56_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/5f2851b119e8/12951_2014_56_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/227a6b5dd7a2/12951_2014_56_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/4b4bbf865bdb/12951_2014_56_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/4ca12c8ba661/12951_2014_56_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/cf6186746191/12951_2014_56_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a56/4267155/ce27ddef679d/12951_2014_56_Fig9_HTML.jpg

相似文献

[1]
Conditionally activating optical contrast agent with enhanced sensitivity via gold nanoparticle plasmon energy transfer: feasibility study.

J Nanobiotechnology. 2014-12-7

[2]
Gold nanoparticle-fluorophore complex for conditionally fluorescing signal mediator.

Anal Chim Acta. 2011-4-7

[3]
Fluorophore-gold nanoparticle complex for sensitive optical biosensing and imaging.

Nanotechnology. 2012-2-10

[4]
Fluorescence manipulation by gold nanoparticles: from complete quenching to extensive enhancement.

J Nanobiotechnology. 2011-5-10

[5]
MMP-14 Triggered Fluorescence Contrast Agent.

Adv Exp Med Biol. 2016

[6]
Highly specific, NIR fluorescent contrast agent with emission controlled by gold nanoparticle.

Adv Exp Med Biol. 2011

[7]
FRET-like fluorophore-nanoparticle complex for highly specific cancer localization.

Adv Exp Med Biol. 2010

[8]
Gold Nanoparticle-Based Fluorescent Contrast Agent with Enhanced Sensitivity.

Adv Exp Med Biol. 2017

[9]
Smart dual-mode fluorescent gold nanoparticle agents.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014-4-8

[10]
NIR fluorophore-hollow gold nanosphere complex for cancer enzyme-triggered detection and hyperthermia.

Adv Exp Med Biol. 2013

引用本文的文献

[1]
Recent advances in light-responsive on-demand drug-delivery systems.

Ther Deliv. 2017-2

本文引用的文献

[1]
Smart dual-mode fluorescent gold nanoparticle agents.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014-4-8

[2]
Gold-nanoparticle-based biosensors for detection of enzyme activity.

Trends Pharmacol Sci. 2013-8-1

[3]
Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles.

ACS Nano. 2013-6-17

[4]
Gold-nanobeacons for simultaneous gene specific silencing and intracellular tracking of the silencing events.

Biomaterials. 2013-1-11

[5]
Near-Infrared Fluorescence Imaging in Humans with Indocyanine Green: A Review and Update.

Open Surg Oncol J. 2010

[6]
Gold-nanobeacons for real-time monitoring of RNA synthesis.

Biosens Bioelectron. 2012-4-20

[7]
Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami.

ACS Nano. 2012-3-30

[8]
Fluorophore-gold nanoparticle complex for sensitive optical biosensing and imaging.

Nanotechnology. 2012-2-10

[9]
Gold nanoparticles in chemical and biological sensing.

Chem Rev. 2012-5-9

[10]
Gold nanoparticle-fluorophore complex for conditionally fluorescing signal mediator.

Anal Chim Acta. 2011-4-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索