Suppr超能文献

南瓜(西葫芦)16千道尔顿韧皮部蛋白CmPP16的过表达提高了对水分亏缺的耐受性。

Overexpression of the pumpkin (Cucurbita maxima) 16 kDa phloem protein CmPP16 increases tolerance to water deficit.

作者信息

Ramírez-Ortega Francisco Arturo, Herrera-Pola Paul Starsky, Toscano-Morales Roberto, Xoconostle-Cázares Beatriz, Ruiz-Medrano Roberto

机构信息

a Dpto. de Biotecnología y Bioingeniería; CINVESTAV-IPN ; Col. San Pedro Zacatenco; México D.F. , México.

出版信息

Plant Signal Behav. 2014;9(11):e973823. doi: 10.4161/15592324.2014.973823.

Abstract

The phloem plays an important role in the delivery of nutrients and signals between photosynthetic to heterotrophic tissues. Proteins and RNAs in the phloem translocation stream may have an important role in maintaining the integrity of the sieve tube system, as well as in long-distance signaling. CmPP16 is a pumpkin phloem protein, which has been shown to bind RNA in a non-sequence specific manner, and move it cell-to-cell and conceivably, long-distance. The protein and RNA are found in both companion cell (CC) and sieve elements (SE). However, a more precise function for this protein is not known. In this work we report the overexpression of CmPP16 fused to GFP via transformation of pumpkin (Cucurbita maxima cv. Big Max) plants in the cotyledonary stage by direct inoculation of Agrobacterium tumefaciens and Agrobacterium rhizogenes. Plants overexpressing CmPP16 did not show an obvious phenotype. However, these plants displayed higher photosynthetic capacity during drought than wild-type (WT) pumpkin or transformed with another construct. These results suggest that CmPP16 may be involved in the response to stress through long-distance signaling.

摘要

韧皮部在光合组织与异养组织之间的养分传递和信号传导中发挥着重要作用。韧皮部转运流中的蛋白质和RNA可能在维持筛管系统的完整性以及长距离信号传导中发挥重要作用。CmPP16是一种南瓜韧皮部蛋白,已证明它能以非序列特异性方式结合RNA,并使其在细胞间移动,甚至可能进行长距离移动。在伴胞(CC)和筛管分子(SE)中都发现了这种蛋白质和RNA。然而,该蛋白质更精确的功能尚不清楚。在这项工作中,我们报告了通过直接接种根癌农杆菌和发根农杆菌,在子叶期南瓜(Cucurbita maxima cv. Big Max)植株中转化融合了绿色荧光蛋白(GFP)的CmPP16,实现了其过表达。过表达CmPP16的植株没有表现出明显的表型。然而,与野生型(WT)南瓜或用另一种构建体转化的南瓜相比,这些植株在干旱期间表现出更高的光合能力。这些结果表明,CmPP16可能通过长距离信号传导参与应激反应。

相似文献

2
Destination-selective long-distance movement of phloem proteins.
Plant Cell. 2005 Jun;17(6):1801-14. doi: 10.1105/tpc.105.031419. Epub 2005 Apr 29.
3
Characterization of the pumpkin Translationally-Controlled Tumor Protein CmTCTP.
Plant Signal Behav. 2013;8(12):e26477. doi: 10.4161/psb.26477. Epub 2013 Sep 24.
4
A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex.
Plant Cell. 2009 Jan;21(1):197-215. doi: 10.1105/tpc.108.061317. Epub 2009 Jan 2.
5
Pumpkin eIF5A isoforms interact with components of the translational machinery in the cucurbit sieve tube system.
Plant J. 2010 Nov;64(3):536-50. doi: 10.1111/j.1365-313X.2010.04347.x. Epub 2010 Oct 1.
6
Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function.
Mol Cell Proteomics. 2009 Feb;8(2):343-56. doi: 10.1074/mcp.M800420-MCP200. Epub 2008 Oct 20.
7
Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem.
Science. 1999 Jan 1;283(5398):94-8. doi: 10.1126/science.283.5398.94.
8
The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation.
Plant Physiol. 2009 May;150(1):378-87. doi: 10.1104/pp.108.134767. Epub 2009 Mar 4.
9
Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):E1980-9. doi: 10.1073/pnas.1202999109. Epub 2012 Jun 25.
10
CmRBP50 protein phosphorylation is essential for assembly of a stable phloem-mobile high-affinity ribonucleoprotein complex.
J Biol Chem. 2011 Jul 1;286(26):23142-9. doi: 10.1074/jbc.M111.244129. Epub 2011 May 13.

引用本文的文献

1
Evolutionary and Structural Analysis of PP16 in Viridiplantae.
Int J Mol Sci. 2024 Feb 29;25(5):2839. doi: 10.3390/ijms25052839.
2
Engineering Macromolecular Trafficking Into the Citrus Vasculature.
Front Plant Sci. 2022 Feb 1;13:818046. doi: 10.3389/fpls.2022.818046. eCollection 2022.
3
Genome-Wide Analysis of the C2 Domain Family in Soybean and Identification of a Putative Abiotic Stress Response Gene .
Front Plant Sci. 2021 Feb 16;12:620544. doi: 10.3389/fpls.2021.620544. eCollection 2021.
4
Plant drought tolerance provided through genome editing of the trehalase gene.
Plant Signal Behav. 2021 Apr 3;16(4):1877005. doi: 10.1080/15592324.2021.1877005. Epub 2021 Feb 11.
5
Unraveling the Roles of Vascular Proteins Using Proteomics.
Molecules. 2021 Jan 27;26(3):667. doi: 10.3390/molecules26030667.
6
Genetics and breeding for climate change in Orphan crops.
Theor Appl Genet. 2021 Jun;134(6):1787-1815. doi: 10.1007/s00122-020-03755-1. Epub 2021 Jan 23.
7
Mature Luffa Leaves ( L.) as a Tool for Gene Expression Analysis by Agroinfiltration.
Front Plant Sci. 2017 Feb 21;8:228. doi: 10.3389/fpls.2017.00228. eCollection 2017.
8
Ectopic expression of phloem motor protein pea forisome PsSEO-F1 enhances salinity stress tolerance in tobacco.
Plant Cell Rep. 2016 May;35(5):1021-41. doi: 10.1007/s00299-016-1935-9. Epub 2016 Jan 29.

本文引用的文献

3
Vascular gene expression: a hypothesis.
Front Plant Sci. 2013 Jul 17;4:261. doi: 10.3389/fpls.2013.00261. eCollection 2013.
4
The plant vascular system: evolution, development and functions.
J Integr Plant Biol. 2013 Apr;55(4):294-388. doi: 10.1111/jipb.12041.
5
Systemic movement of FT mRNA and a possible role in floral induction.
Front Plant Sci. 2012 Jun 12;3:127. doi: 10.3389/fpls.2012.00127. eCollection 2012.
6
Control of flowering and storage organ formation in potato by FLOWERING LOCUS T.
Nature. 2011 Sep 25;478(7367):119-22. doi: 10.1038/nature10431.
7
Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function.
Science. 2011 Aug 26;333(6046):1141-4. doi: 10.1126/science.1205727.
8
Macromolecular composition of phloem exudate from white lupin (Lupinus albus L.).
BMC Plant Biol. 2011 Feb 22;11:36. doi: 10.1186/1471-2229-11-36.
9
Plant vascular biology and agriculture.
J Integr Plant Biol. 2010 Jan;52(1):4-7. doi: 10.1111/j.1744-7909.2010.00918.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验