Suppr超能文献

油菜素类固醇功能与蔗糖转运蛋白SlSUT2的相互作用调节丛枝菌根的形成。

Interaction of brassinosteroid functions and sucrose transporter SlSUT2 regulate the formation of arbuscular mycorrhiza.

作者信息

Bitterlich Michael, Krügel Undine, Boldt-Burisch Katja, Franken Philipp, Kühn Christina

机构信息

a Humboldt University of Berlin ; Plant Physiology Department ; Berlin , Germany.

出版信息

Plant Signal Behav. 2014;9(10):e970426. doi: 10.4161/15592316.2014.970426.

Abstract

Transgenic tomato plants with reduced expression of the sucrose transporter SlSUT2 showed higher efficiency of mycorrhization suggesting a sucrose retrieval function of SlSUT2 from the peri-arbuscular space back into the cell cytoplasm plant cytoplasm thereby limiting mycorrhiza fungal development. Sucrose uptake in colonized root cells requires efficient plasma membrane-targeting of SlSUT2 which is often retained intracellularly in vacuolar vesicles. Protein-protein interaction studies suggested a link between SISUT2 function and components of brassinosteroid biosynthesis and signaling. Indeed, the tomato DWARF mutant d(x) defective in BR synthesis (1) showed significantly reduced mycorrhization parameters. (2) The question has been raised whether the impact of brassinosteroids on mycorrhization is a general phenomenon. Here, we include a rice mutant defective in DIM1/DWARF1 involved in BR biosynthesis to investigate the effects on mycorrhization. A model is presented where brassinolides are able to impact mycorrhization by activating SUT2 internalization and inhibiting its role in sucrose retrieval.

摘要

蔗糖转运蛋白SlSUT2表达降低的转基因番茄植株表现出更高的菌根形成效率,这表明SlSUT2具有将丛枝周空间中的蔗糖重新转运回植物细胞质中的功能,从而限制了菌根真菌的发育。定殖根细胞中的蔗糖摄取需要SlSUT2高效靶向质膜,而SlSUT2通常保留在液泡囊泡的细胞内。蛋白质-蛋白质相互作用研究表明SISUT2功能与油菜素类固醇生物合成和信号传导成分之间存在联系。事实上,在BR合成中存在缺陷的番茄矮化突变体d(x)(1)显示菌根形成参数显著降低。(2)有人提出油菜素类固醇对菌根形成的影响是否是一种普遍现象。在这里,我们纳入了一个参与BR生物合成的DIM1/DWARF1存在缺陷的水稻突变体,以研究其对菌根形成的影响。我们提出了一个模型,其中油菜素内酯能够通过激活SUT2内化并抑制其在蔗糖重新转运中的作用来影响菌根形成。

相似文献

3
Brassinosteroids and sucrose transport in mycorrhizal tomato plants.
Plant Signal Behav. 2020;15(2):1714292. doi: 10.1080/15592324.2020.1714292. Epub 2020 Jan 14.
4
Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza.
J Plant Physiol. 2011 Jul 15;168(11):1256-63. doi: 10.1016/j.jplph.2011.01.026. Epub 2011 Apr 13.
5
Brassinosteroids Affect the Symbiosis Between the AM Fungus and Solanaceous Host Plants.
Front Plant Sci. 2019 May 15;10:571. doi: 10.3389/fpls.2019.00571. eCollection 2019.
6
Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi.
New Phytol. 2011 Apr;190(1):193-205. doi: 10.1111/j.1469-8137.2010.03610.x. Epub 2011 Jan 14.
7
Overexpression of sucrose transporter gene PbSUT2 from Pyrus bretschneideri, enhances sucrose content in Solanum lycopersicum fruit.
Plant Physiol Biochem. 2016 Aug;105:150-161. doi: 10.1016/j.plaphy.2016.04.019. Epub 2016 Apr 13.
8
Identification of arbuscular mycorrhiza-inducible Nitrate Transporter 1/Peptide Transporter Family (NPF) genes in rice.
Mycorrhiza. 2018 Jan;28(1):93-100. doi: 10.1007/s00572-017-0802-z. Epub 2017 Oct 9.

引用本文的文献

1
Regulates Cell Wall Architecture and Biotic Stress Responses in Potatoes ().
Plants (Basel). 2025 Sep 22;14(18):2941. doi: 10.3390/plants14182941.
2
Genome-Wide Identification and Characterization of the BZR Transcription Factor Gene Family in .
Genes (Basel). 2025 Jan 26;16(2):155. doi: 10.3390/genes16020155.
4
StBIN2 Positively Regulates Potato Formation through Hormone and Sugar Signaling.
Int J Mol Sci. 2023 Nov 8;24(22):16087. doi: 10.3390/ijms242216087.
5
Molecular Regulation of Arbuscular Mycorrhizal Symbiosis.
Int J Mol Sci. 2022 May 25;23(11):5960. doi: 10.3390/ijms23115960.
6
Brassinosteroids Benefit Plants Performance by Augmenting Arbuscular Mycorrhizal Symbiosis.
Microbiol Spectr. 2021 Dec 22;9(3):e0164521. doi: 10.1128/spectrum.01645-21. Epub 2021 Dec 15.
8
Brassinosteroids and sucrose transport in mycorrhizal tomato plants.
Plant Signal Behav. 2020;15(2):1714292. doi: 10.1080/15592324.2020.1714292. Epub 2020 Jan 14.
9
Brassinosteroids Affect the Symbiosis Between the AM Fungus and Solanaceous Host Plants.
Front Plant Sci. 2019 May 15;10:571. doi: 10.3389/fpls.2019.00571. eCollection 2019.
10
The Role of Gibberellins and Brassinosteroids in Nodulation and Arbuscular Mycorrhizal Associations.
Front Plant Sci. 2019 Mar 15;10:269. doi: 10.3389/fpls.2019.00269. eCollection 2019.

本文引用的文献

1
Border control--a membrane-linked interactome of Arabidopsis.
Science. 2014 May 16;344(6185):711-6. doi: 10.1126/science.1251358.
3
Membrane trafficking pathways and their roles in plant-microbe interactions.
Plant Cell Physiol. 2014 Apr;55(4):672-86. doi: 10.1093/pcp/pcu046. Epub 2014 Mar 9.
4
Sugar transporters in plants and in their interactions with fungi.
Trends Plant Sci. 2012 Jul;17(7):413-22. doi: 10.1016/j.tplants.2012.03.009. Epub 2012 Apr 17.
5
DIMINUTO 1 affects the lignin profile and secondary cell wall formation in Arabidopsis.
Planta. 2012 Mar;235(3):485-98. doi: 10.1007/s00425-011-1519-4. Epub 2011 Sep 27.
6
The potato sucrose transporter StSUT1 interacts with a DRM-associated protein disulfide isomerase.
Mol Plant. 2012 Jan;5(1):43-62. doi: 10.1093/mp/ssr048. Epub 2011 Jul 10.
7
Sucrose transporter regulation at the transcriptional, post-transcriptional and post-translational level.
J Plant Physiol. 2011 Aug 15;168(12):1426-33. doi: 10.1016/j.jplph.2011.02.005. Epub 2011 Mar 27.
8
A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana.
Plant J. 2011 Feb;65(4):634-46. doi: 10.1111/j.1365-313X.2010.04449.x. Epub 2011 Jan 10.
9
Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula.
New Phytol. 2010 Feb;185(3):716-33. doi: 10.1111/j.1469-8137.2009.03116.x. Epub 2009 Dec 14.
10
Proteome analysis of detergent-resistant membranes (DRMs) associated with OsRac1-mediated innate immunity in rice.
Plant Cell Physiol. 2009 Jul;50(7):1191-200. doi: 10.1093/pcp/pcp077. Epub 2009 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验