Ghuman Avniel Singh, Brunet Nicolas M, Li Yuanning, Konecky Roma O, Pyles John A, Walls Shawn A, Destefino Vincent, Wang Wei, Richardson R Mark
1] University of Pittsburgh School of Medicine, 3550 Terrace St, Pittsburgh, Pennsylvania 15213, USA [2] Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop St, Pittsburgh, Pennsylvania 15213, USA [3] Center for the Neural Basis of Cognition, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213, USA.
1] University of Pittsburgh School of Medicine, 3550 Terrace St, Pittsburgh, Pennsylvania 15213, USA [2] Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop St, Pittsburgh, Pennsylvania 15213, USA.
Nat Commun. 2014 Dec 8;5:5672. doi: 10.1038/ncomms6672.
Humans' ability to rapidly and accurately detect, identify and classify faces under variable conditions derives from a network of brain regions highly tuned to face information. The fusiform face area (FFA) is thought to be a computational hub for face processing; however, temporal dynamics of face information processing in FFA remains unclear. Here we use multivariate pattern classification to decode the temporal dynamics of expression-invariant face information processing using electrodes placed directly on FFA in humans. Early FFA activity (50-75 ms) contained information regarding whether participants were viewing a face. Activity between 200 and 500 ms contained expression-invariant information about which of 70 faces participants were viewing along with the individual differences in facial features and their configurations. Long-lasting (500+ms) broadband gamma frequency activity predicted task performance. These results elucidate the dynamic computational role FFA plays in multiple face processing stages and indicate what information is used in performing these visual analyses.
人类在各种条件下快速、准确地检测、识别和分类面孔的能力源自一个高度调谐以处理面孔信息的脑区网络。梭状面孔区(FFA)被认为是面孔处理的一个计算枢纽;然而,FFA中面孔信息处理的时间动态仍不清楚。在这里,我们使用多变量模式分类,通过直接放置在人类FFA上的电极来解码表情不变的面孔信息处理的时间动态。FFA的早期活动(50 - 75毫秒)包含有关参与者是否在观看面孔的信息。200至500毫秒之间的活动包含关于参与者正在观看70张面孔中的哪一张的表情不变信息,以及面部特征及其配置的个体差异。持久的(500 +毫秒)宽带伽马频率活动预测了任务表现。这些结果阐明了FFA在多个面孔处理阶段所起的动态计算作用,并指出了在执行这些视觉分析时使用了哪些信息。