Suppr超能文献

利用多体素模式分析研究腹侧视觉流中的面部身份信息表示。

Representations of facial identity information in the ventral visual stream investigated with multivoxel pattern analyses.

机构信息

Laboratory of Biological Psychology, University of Leuven, 3000 Leuven, Belgium.

出版信息

J Neurosci. 2013 May 8;33(19):8549-58. doi: 10.1523/JNEUROSCI.1829-12.2013.

Abstract

The neural basis of face recognition has been investigated extensively. Using fMRI, several regions have been identified in the human ventral visual stream that seem to be involved in processing and identifying faces, but the nature of the face representations in these regions is not well known. In particular, multivoxel pattern analyses have revealed distributed maps within these regions, but did not reveal the organizing principles of these maps. Here we isolated different types of perceptual and conceptual face properties to determine which properties are mapped in which regions. A set of faces was created with systematic manipulations of featural and configural visual characteristics. In a second part of the study, personal and spatial context information was added to all faces except one. The perceptual properties of faces were represented in face regions and in other regions of interest such as early visual and object-selective cortex. Only representations in early visual cortex were correlated with pixel-based similarities between the stimuli. The representation of nonperceptual properties was less distributed. In particular, the spatial location associated with a face was only represented in the parahippocampal place area. These findings demonstrate a relatively distributed representation of perceptual and conceptual face properties that involves both face-selective/sensitive and non-face-selective cortical regions.

摘要

人脸识别的神经基础已得到广泛研究。使用 fMRI,已经在人类腹侧视觉流中确定了几个似乎参与处理和识别面孔的区域,但这些区域中的面孔表示的性质尚不清楚。特别是,多体素模式分析揭示了这些区域内的分布式图谱,但并未揭示这些图谱的组织原则。在这里,我们分离了不同类型的感知和概念性面孔属性,以确定哪些属性映射到哪些区域。通过对面孔的特征和结构视觉特征进行系统操纵,创建了一组面孔。在研究的第二部分中,除了一张面孔之外,所有面孔都添加了个人和空间上下文信息。面孔的感知属性在面孔区域和其他感兴趣的区域(如早期视觉和物体选择性皮质)中得到了表示。只有早期视觉皮质中的表示与刺激之间基于像素的相似性相关。非感知属性的表示分布较少。特别是,与面孔相关联的空间位置仅在海马旁回位置区域中得到表示。这些发现表明,感知和概念性面孔属性的相对分布式表示涉及到选择性/敏感的面孔区域和非面孔选择性的皮质区域。

相似文献

4
Conceptual size representation in ventral visual cortex.腹侧视觉皮层中的概念性大小表征
Neuropsychologia. 2016 Jan 29;81:198-206. doi: 10.1016/j.neuropsychologia.2015.12.029. Epub 2015 Dec 28.
7
Category-selective background connectivity in ventral visual cortex.腹侧视觉皮层中的类别选择性背景连接
Cereb Cortex. 2012 Feb;22(2):391-402. doi: 10.1093/cercor/bhr118. Epub 2011 Jun 13.
8
Retinotopy versus face selectivity in macaque visual cortex.猕猴视觉皮层中的视网膜拓扑与面孔选择性
J Cogn Neurosci. 2014 Dec;26(12):2691-700. doi: 10.1162/jocn_a_00672. Epub 2014 Jun 4.
10
fMRI evidence for the neural representation of faces.面孔神经表征的功能磁共振成像证据。
Nat Neurosci. 2005 Oct;8(10):1386-90. doi: 10.1038/nn1538. Epub 2005 Sep 4.

引用本文的文献

3
Single-Unit Recordings Reveal the Selectivity of a Human Face Area.单细胞记录揭示了人类面部区域的选择性。
J Neurosci. 2021 Nov 10;41(45):9340-9349. doi: 10.1523/JNEUROSCI.0349-21.2021. Epub 2021 Nov 3.
6
Separated and overlapping neural coding of face and body identity.面孔和身体身份的分离和重叠的神经编码。
Hum Brain Mapp. 2021 Sep;42(13):4242-4260. doi: 10.1002/hbm.25544. Epub 2021 May 25.
7
FFA and OFA Encode Distinct Types of Face Identity Information.FFA 和 OFA 编码不同类型的面孔身份信息。
J Neurosci. 2021 Mar 3;41(9):1952-1969. doi: 10.1523/JNEUROSCI.1449-20.2020. Epub 2021 Jan 15.
8
The Face of Image Reconstruction: Progress, Pitfalls, Prospects.《图像重建之面貌:进展、陷阱、前景》。
Trends Cogn Sci. 2020 Sep;24(9):747-759. doi: 10.1016/j.tics.2020.06.006. Epub 2020 Jul 13.

本文引用的文献

6
The role of the occipital face area in the cortical face perception network.枕面区在皮质面孔感知网络中的作用。
Exp Brain Res. 2011 Apr;209(4):481-93. doi: 10.1007/s00221-011-2579-1. Epub 2011 Feb 12.
9
Reading the mind's eye: decoding category information during mental imagery.读心之眼:在心理意象期间解码类别信息。
Neuroimage. 2010 Apr 1;50(2):818-25. doi: 10.1016/j.neuroimage.2009.11.084. Epub 2009 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验