Suppr超能文献

通过RNA干扰技术研发更优的免疫疗法。

Engineering better immunotherapies via RNA interference.

作者信息

Sioud Mouldy

机构信息

a Department of Immunology; Institute for Cancer Research ; Oslo University Hospital ; Montebello , Norway.

出版信息

Hum Vaccin Immunother. 2014;10(11):3165-74. doi: 10.4161/hv.29754.

Abstract

The therapeutic potential of dendritic cell (DC) cancer vaccines has gained momentum in recent years. However, clinical data indicate that antitumor immune responses generally fail to translate into measurable tumor regression. This has been ascribed to a variety of tolerance mechanisms, one of which is the expression of immunosuppressive factors by DCs and T cells. With respect to cancer immunotherapies, these factors antagonise the ability to induce robust and sustained immunity required for tumor cell eradication. Gene silencing of immunosuppressive factors in either DCs or adoptive transferred T cells enhanced anti-tumor immune responses and significantly inhibited tumor growth. Therefore, engineered next generation of DC vaccines or adoptive T-cell therapy should include immunomodulatory siRNAs to release the "brakes" imposed by the immune system. Moreover, the combination of gene silencing, antigen targeting to DCs and cytoplasmic cargo delivery will improve clinical benefits.

摘要

近年来,树突状细胞(DC)癌症疫苗的治疗潜力不断增强。然而,临床数据表明,抗肿瘤免疫反应通常无法转化为可测量的肿瘤消退。这归因于多种耐受机制,其中之一是DC和T细胞表达免疫抑制因子。就癌症免疫疗法而言,这些因子拮抗诱导根除肿瘤细胞所需的强大而持续免疫的能力。对DC或过继转移T细胞中的免疫抑制因子进行基因沉默可增强抗肿瘤免疫反应并显著抑制肿瘤生长。因此,新一代工程化DC疫苗或过继性T细胞疗法应包括免疫调节性小干扰RNA(siRNA),以解除免疫系统施加的“刹车”。此外,基因沉默、抗原靶向DC和细胞质货物递送的组合将改善临床疗效。

相似文献

1
Engineering better immunotherapies via RNA interference.
Hum Vaccin Immunother. 2014;10(11):3165-74. doi: 10.4161/hv.29754.
2
Therapeutic gene modified cell based cancer vaccines.
Gene. 2013 Aug 10;525(2):200-7. doi: 10.1016/j.gene.2013.03.056. Epub 2013 Apr 6.
3
Clinically feasible approaches to potentiating cancer cell-based immunotherapies.
Hum Vaccin Immunother. 2015;11(4):851-69. doi: 10.1080/21645515.2015.1009814.
4
Immunosuppressive factor blockade in dendritic cells via siRNAs results in objective clinical responses.
Methods Mol Biol. 2015;1218:269-76. doi: 10.1007/978-1-4939-1538-5_16.
5
Silencing IDO in dendritic cells: a novel approach to enhance cancer immunotherapy in a murine breast cancer model.
Int J Cancer. 2013 Feb 15;132(4):967-77. doi: 10.1002/ijc.27710. Epub 2012 Jul 20.
6
Unleashing the Therapeutic Potential of Dendritic and T Cell Therapies Using RNA Interference.
Methods Mol Biol. 2020;2115:259-280. doi: 10.1007/978-1-0716-0290-4_15.

引用本文的文献

1
Production of mRNA-Loaded Dendritic Cell Cancer Vaccines.
Methods Mol Biol. 2025;2965:245-258. doi: 10.1007/978-1-0716-4742-4_11.
2
RNA Vaccines: Yeast as a Novel Antigen Vehicle.
Vaccines (Basel). 2023 Aug 7;11(8):1334. doi: 10.3390/vaccines11081334.
3
Releasing the Immune System Brakes Using siRNAs Enhances Cancer Immunotherapy.
Cancers (Basel). 2019 Feb 3;11(2):176. doi: 10.3390/cancers11020176.
4
Cancer Immunotherapy: Silencing Intracellular Negative Immune Regulators of Dendritic Cells.
Cancers (Basel). 2019 Jan 17;11(1):108. doi: 10.3390/cancers11010108.
5
Dendritic Cells and Programmed Death-1 Blockade: A Joint Venture to Combat Cancer.
Front Immunol. 2018 Mar 1;9:394. doi: 10.3389/fimmu.2018.00394. eCollection 2018.
8
Cancer cell-binding peptide fused Fc domain activates immune effector cells and blocks tumor growth.
Oncotarget. 2016 Nov 15;7(46):75940-75953. doi: 10.18632/oncotarget.12445.
9
Recombinant Lactobacillus plantarum induces immune responses to cancer testis antigen NY-ESO-1 and maturation of dendritic cells.
Hum Vaccin Immunother. 2015;11(11):2664-73. doi: 10.1080/21645515.2015.1056952. Epub 2015 Jul 17.

本文引用的文献

2
Leukemia cell-targeted STAT3 silencing and TLR9 triggering generate systemic antitumor immunity.
Blood. 2014 Jan 2;123(1):15-25. doi: 10.1182/blood-2013-07-517987. Epub 2013 Oct 29.
3
Delivery materials for siRNA therapeutics.
Nat Mater. 2013 Nov;12(11):967-77. doi: 10.1038/nmat3765.
4
A novel peptide carrier for efficient targeting of antigens and nucleic acids to dendritic cells.
FASEB J. 2013 Aug;27(8):3272-83. doi: 10.1096/fj.12-224758. Epub 2013 May 13.
5
T-cell tolerance in cancer.
Immunotherapy. 2013 May;5(5):513-531. doi: 10.2217/imt.13.33.
7
MicroRNA-155 is required for effector CD8+ T cell responses to virus infection and cancer.
Immunity. 2013 Apr 18;38(4):742-53. doi: 10.1016/j.immuni.2012.12.006.
9
Creating genetic resistance to HIV.
Curr Opin Immunol. 2012 Oct;24(5):625-32. doi: 10.1016/j.coi.2012.08.013. Epub 2012 Sep 15.
10
Adoptive transfer of siRNA Cblb-silenced CD8+ T lymphocytes augments tumor vaccine efficacy in a B16 melanoma model.
PLoS One. 2012;7(9):e44295. doi: 10.1371/journal.pone.0044295. Epub 2012 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验