Luo Xiongbiao, Jayarathne Uditha L, McLeod A Jonathan, Mori Kensaku
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):340-8. doi: 10.1007/978-3-319-10470-6_43.
Endoscopic navigation generally integrates different modalities of sensory information in order to continuously locate an endoscope relative to suspicious tissues in the body during interventions. Current electromagnetic tracking techniques for endoscopic navigation have limited accuracy due to tissue deformation and magnetic field distortion. To avoid these limitations and improve the endoscopic localization accuracy, this paper proposes a new endoscopic navigation framework that uses an optical mouse sensor to measure the endoscope movements along its viewing direction. We then enhance the differential evolution algorithm by modifying its mutation operation. Based on the enhanced differential evolution method, these movement measurements and image structural patches in endoscopic videos are fused to accurately determine the endoscope position. An evaluation on a dynamic phantom demonstrated that our method provides a more accurate navigation framework. Compared to state-of-the-art methods, it improved the navigation accuracy from 2.4 to 1.6 mm and reduced the processing time from 2.8 to 0.9 seconds.
内镜导航通常会整合不同形式的感官信息,以便在干预过程中持续确定体内内窥镜相对于可疑组织的位置。由于组织变形和磁场畸变,当前用于内镜导航的电磁跟踪技术精度有限。为避免这些限制并提高内镜定位精度,本文提出了一种新的内镜导航框架,该框架使用光学鼠标传感器来测量内窥镜沿其观察方向的移动。然后,我们通过修改其变异操作来增强差分进化算法。基于增强的差分进化方法,将这些移动测量值与内镜视频中的图像结构块进行融合,以准确确定内窥镜的位置。在动态模型上进行的评估表明,我们的方法提供了一个更精确的导航框架。与现有方法相比,它将导航精度从2.4毫米提高到1.6毫米,并将处理时间从2.8秒减少到0.9秒。