Suppr超能文献

法医背景下的复杂DNA混合物分析:使用似然比模型评估证明力

Complex DNA mixture analysis in a forensic context: evaluating the probative value using a likelihood ratio model.

作者信息

Haned Hinda, Benschop Corina C G, Gill Peter D, Sijen Titia

机构信息

Department of Human Biological Traces, Netherlands Forensic Institute, P.O. Box 24044, 2490 AA The Hague, The Netherlands.

National Institute of Public Health, Department of Forensic Biology, P.O. Box 4404 Nydalen, 0403 Oslo, Norway; National Institute of Public Health, Department of Forensic Medicine, P.O. Box 4950 Nydalen, 0424 Oslo, Norway.

出版信息

Forensic Sci Int Genet. 2015 May;16:17-25. doi: 10.1016/j.fsigen.2014.11.014. Epub 2014 Nov 24.

Abstract

The interpretation of mixed DNA profiles obtained from low template DNA samples has proven to be a particularly difficult task in forensic casework. Newly developed likelihood ratio (LR) models that account for PCR-related stochastic effects, such as allelic drop-out, drop-in and stutters, have enabled the analysis of complex cases that would otherwise have been reported as inconclusive. In such samples, there are uncertainties about the number of contributors, and the correct sets of propositions to consider. Using experimental samples, where the genotypes of the donors are known, we evaluated the feasibility and the relevance of the interpretation of high order mixtures, of three, four and five donors. The relative risks of analyzing high order mixtures of three, four, and five donors, were established by comparison of a 'gold standard' LR, to the LR that would be obtained in casework. The 'gold standard' LR is the ideal LR: since the genotypes and number of contributors are known, it follows that the parameters needed to compute the LR can be determined per contributor. The 'casework LR' was calculated as used in standard practice, where unknown donors are assumed; the parameters were estimated from the available data. Both LRs were calculated using the basic standard model, also termed the drop-out/drop-in model, implemented in the LRmix module of the R package Forensim. We show how our results furthered the understanding of the relevance of analyzing high order mixtures in a forensic context. Limitations are highlighted, and it is illustrated how our study serves as a guide to implement likelihood ratio interpretation of complex DNA profiles in forensic casework.

摘要

在法医案件工作中,对从低模板DNA样本中获得的混合DNA图谱进行解读已被证明是一项特别困难的任务。新开发的似然比(LR)模型考虑了与PCR相关的随机效应,如等位基因脱扣、插入和结巴现象,使得对原本会被报告为无法得出结论的复杂案件进行分析成为可能。在这类样本中,关于贡献者的数量以及要考虑的正确命题集存在不确定性。我们使用捐赠者基因型已知的实验样本,评估了对三、四和五个捐赠者的高阶混合物进行解读的可行性和相关性。通过将“金标准”似然比与在实际案件工作中获得的似然比进行比较,确定了分析三、四和五个捐赠者的高阶混合物的相对风险。“金标准”似然比是理想的似然比:由于贡献者的基因型和数量已知,因此可以为每个贡献者确定计算似然比所需的参数。“实际案件工作似然比”是按照标准做法计算的,其中假设捐赠者未知;参数是根据可用数据估计的。两个似然比均使用基本标准模型(也称为脱扣/插入模型)计算,该模型在R包Forensim的LRmix模块中实现。我们展示了我们的结果如何进一步促进了对在法医背景下分析高阶混合物的相关性的理解。突出了局限性,并说明了我们的研究如何作为在法医案件工作中对复杂DNA图谱进行似然比解读的实施指南。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验