Suppr超能文献

连续法医 DNA 混合物解释框架内的四个模型变体:对证据推断和报告的影响。

Four model variants within a continuous forensic DNA mixture interpretation framework: Effects on evidential inference and reporting.

机构信息

Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America.

Department of Computer Science, Rutgers University, Camden, New Jersey, United States of America.

出版信息

PLoS One. 2018 Nov 20;13(11):e0207599. doi: 10.1371/journal.pone.0207599. eCollection 2018.

Abstract

Continuous mixture interpretation methods that employ probabilistic genotyping to compute the Likelihood Ratio (LR) utilize more information than threshold-based systems. The continuous interpretation schemes described in the literature, however, do not all use the same underlying probabilistic model and standards outlining which probabilistic models may or may not be implemented into casework do not exist; thus, it is the individual forensic laboratory or expert that decides which model and corresponding software program to implement. For countries, such as the United States, with an adversarial legal system, one can envision a scenario where two probabilistic models are used to present the weight of evidence, and two LRs are presented by two experts. Conversely, if no independent review of the evidence is requested, one expert using one model may present one LR as there is no standard or guideline requiring the uncertainty in the LR estimate be presented. The choice of model determines the underlying probability calculation, and changes to it can result in non-negligible differences in the reported LR or corresponding verbal categorization presented to the trier-of-fact. In this paper, we study the impact of model differences on the LR and on the corresponding verbal expression computed using four variants of a continuous mixture interpretation method. The four models were tested five times each on 101, 1-, 2- and 3-person experimental samples with known contributors. For each sample, LRs were computed using the known contributor as the person of interest. In all four models, intra-model variability increased with an increase in the number of contributors and with a decrease in the contributor's template mass. Inter-model variability in the associated verbal expression of the LR was observed in 32 of the 195 LRs used for comparison. Moreover, in 11 of these profiles there was a change from LR > 1 to LR < 1. These results indicate that modifications to existing continuous models do have the potential to significantly impact the final statistic, justifying the continuation of broad-based, large-scale, independent studies to quantify the limits of reliability and variability of existing forensically relevant systems.

摘要

采用概率基因分型来计算似然比(LR)的连续混合解释方法利用了比基于阈值的系统更多的信息。然而,文献中描述的连续解释方案并非都使用相同的基础概率模型,也不存在概述哪些概率模型可以或不可以应用于案例的标准;因此,决定使用哪种模型和相应软件程序的是个别法医实验室或专家。对于像美国这样采用对抗式法律体系的国家,可以设想这样一种情况,即使用两种概率模型来呈现证据的权重,并由两位专家提出两种 LR。相反,如果没有请求对证据进行独立审查,则由于没有标准或准则要求提出 LR 估计的不确定性,一位专家使用一种模型可能会提出一种 LR。模型的选择决定了基础概率计算,如果对其进行更改,可能会导致报告的 LR 或向事实裁决者提出的相应口头分类产生不可忽视的差异。在本文中,我们研究了模型差异对 LR 以及使用连续混合解释方法的四个变体计算得出的相应口头表达的影响。在已知贡献者的 101、1、2 和 3 人实验样本中,对四个模型进行了五次测试。对于每个样本,使用已知贡献者作为感兴趣的人计算 LR。在所有四个模型中,随着贡献者数量的增加和贡献者模板质量的降低,模型内变异性增加。在用于比较的 195 个 LR 中,观察到 32 个 LR 的关联 LR 口头表达存在模型间变异性。此外,在这些配置文件中有 11 个从 LR>1 变为 LR<1。这些结果表明,对现有连续模型的修改确实有可能对最终统计数据产生重大影响,这证明需要继续进行广泛的、大规模的、独立的研究,以量化现有法证相关系统的可靠性和变异性的极限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d464/6245789/e80aa088b2ef/pone.0207599.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验