Wang Min, Fuhrmann Jakob, Thompson Paul R
Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States.
Biochemistry. 2014 Dec 23;53(50):7884-92. doi: 10.1021/bi501279g. Epub 2014 Dec 8.
Protein arginine methyltransferase 5 (PRMT5) is a histone-modifying enzyme whose activity is aberrantly upregulated in various cancers and thereby contributes to a progrowth phenotype. Indeed, knockdown of PRMT5 leads to growth arrest and apoptosis, suggesting that inhibitors targeting this enzyme may have therapeutic utility in oncology. To aid the development of inhibitors targeting PRMT5, we initiated mechanistic studies geared to understand how PRMT5 selectively catalyzes the symmetric dimethylation of its substrates. Toward that end, we characterized the regiospecificity and processivity of bacterially expressed Caenorhabditis elegans PRMT5 (cPRMT5), insect cell-expressed human PRMT5 (hPRMT5), and human PRMT5 complexed with methylosome protein 50 (MEP50), i.e., the PRMT5·MEP50 complex. Our studies confirm that arginine 3 is the only site of methylation in both histone H4 and H4 tail peptide analogues and that sites distal to the site of methylation promote the efficient symmetric dimethylation of PRMT5 substrates by increasing the affinity of the monomethylated substrate for the enzyme. Additionally, we show for the first time that both cPRMT5 and the hPRMT5·MEP50 complex catalyze substrate dimethylation in a distributive manner, which is assisted by long-range interactions. Finally, our data confirm that MEP50 plays a key role in substrate recognition and activates PRMT5 activity by increasing its affinity for protein substrates. In total, our results suggest that it may be possible to allosterically inhibit PRMT5 by targeting binding pockets outside the active site.
蛋白质精氨酸甲基转移酶5(PRMT5)是一种组蛋白修饰酶,其活性在多种癌症中异常上调,从而导致促生长表型。事实上,敲低PRMT5会导致生长停滞和凋亡,这表明靶向该酶的抑制剂可能在肿瘤学中具有治疗作用。为了帮助开发靶向PRMT5的抑制剂,我们启动了机制研究,旨在了解PRMT5如何选择性催化其底物的对称二甲基化。为此,我们对细菌表达的秀丽隐杆线虫PRMT5(cPRMT5)、昆虫细胞表达的人PRMT5(hPRMT5)以及与甲基osome蛋白50(MEP50)复合的人PRMT5(即PRMT5·MEP50复合物)的区域特异性和持续性进行了表征。我们的研究证实,精氨酸3是组蛋白H4和H4尾肽类似物中唯一的甲基化位点,并且甲基化位点远端的位点通过增加单甲基化底物与该酶的亲和力来促进PRMT5底物的有效对称二甲基化。此外,我们首次表明cPRMT5和hPRMT5·MEP50复合物均以分布方式催化底物二甲基化,这由远程相互作用辅助。最后,我们的数据证实MEP50在底物识别中起关键作用,并通过增加其对蛋白质底物的亲和力来激活PRMT5活性。总体而言,我们的结果表明,通过靶向活性位点之外的结合口袋,有可能变构抑制PRMT5。