Suppr超能文献

来自稻瘟病菌的谷氨酸脱氢酶基因MgGDH的过表达赋予转基因水稻对脱水胁迫的耐受性。

Over-expression of a glutamate dehydrogenase gene, MgGDH, from Magnaporthe grisea confers tolerance to dehydration stress in transgenic rice.

作者信息

Zhou Yanbiao, Zhang Caisheng, Lin Jianzhong, Yang Yuanzhu, Peng Yuchong, Tang Dongying, Zhao Xiaoying, Zhu Yonghua, Liu Xuanming

机构信息

Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China.

出版信息

Planta. 2015 Mar;241(3):727-40. doi: 10.1007/s00425-014-2214-z. Epub 2014 Dec 9.

Abstract

Heterologous expression of a fungal NADP(H)-GDH gene ( MgGDH ) from Magnaporthe grisea can improve dehydration stress tolerance in rice by preventing toxic accumulation of ammonium. Glutamate dehydrogenase (GDH; EC 1.4.1.2 and EC 1.4.1.4) may act as a stress-responsive enzyme in detoxification of high intracellular ammonia and production of glutamate for proline synthesis under stress conditions. In present study, a fungal NADP(H)-GDH gene (MgGDH) from Magnaporthe grisea was over-expressed in rice (Oryza sativa L. cv. 'kitaake'), and the transgenic plants showed the improvement of tolerance to dehydration stress. The kinetic analysis showed that His-TF-MgGDH preferentially utilizes ammonium to produce L-glutamate. Moreover, the affinity of His-TF-MgGDH for ammonium was dramatically higher than that of His-TF-OsGDH for ammonium. Over-expressing MgGDH transgenic rice plants showed lower water-loss rate and higher completely close stomata than the wild-type plants under dehydration stress conditions. In transgenic plants, the NADP(H)-GDH activities were markedly higher than those in wild-type plants and the amination activity was significantly higher than the deamination activity. Compared with wild-type plants, the transgenic plants accumulated much less NH4 (+) but higher amounts of glutamate, proline and soluble sugar under dehydration stress conditions. These results indicate that heterologous expression of MgGDH can prevent toxic accumulation of ammonium and in return improve dehydration stress tolerance in rice.

摘要

来自稻瘟病菌的真菌NADP(H)-GDH基因(MgGDH)的异源表达可通过防止铵的毒性积累来提高水稻的脱水胁迫耐受性。谷氨酸脱氢酶(GDH;EC 1.4.1.2和EC 1.4.1.4)可能作为一种应激反应酶,在胁迫条件下对细胞内高浓度氨进行解毒,并为脯氨酸合成产生谷氨酸。在本研究中,来自稻瘟病菌的真菌NADP(H)-GDH基因(MgGDH)在水稻(Oryza sativa L. cv. 'kitaake')中过表达,转基因植株表现出对脱水胁迫耐受性的提高。动力学分析表明,His-TF-MgGDH优先利用铵来产生L-谷氨酸。此外,His-TF-MgGDH对铵的亲和力显著高于His-TF-OsGDH对铵的亲和力。在脱水胁迫条件下,过表达MgGDH的转基因水稻植株比野生型植株表现出更低的失水率和更高的完全关闭气孔率。在转基因植株中,NADP(H)-GDH活性明显高于野生型植株,且氨基化活性显著高于脱氨基活性。与野生型植株相比,转基因植株在脱水胁迫条件下积累的NH4(+)少得多,但谷氨酸、脯氨酸和可溶性糖的含量更高。这些结果表明,MgGDH的异源表达可以防止铵的毒性积累,进而提高水稻的脱水胁迫耐受性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验