Suppr超能文献

基于集合经验模态分解的粗晶粒奥氏体不锈钢超声检测方法。

Ensemble Empirical Mode Decomposition based methodology for ultrasonic testing of coarse grain austenitic stainless steels.

机构信息

Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, India.

Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, India.

出版信息

Ultrasonics. 2015 Mar;57:167-78. doi: 10.1016/j.ultras.2014.11.008. Epub 2014 Nov 28.

Abstract

A signal processing methodology is proposed in this paper for effective reconstruction of ultrasonic signals in coarse grained high scattering austenitic stainless steel. The proposed methodology is comprised of the Ensemble Empirical Mode Decomposition (EEMD) processing of ultrasonic signals and application of signal minimisation algorithm on selected Intrinsic Mode Functions (IMFs) obtained by EEMD. The methodology is applied to ultrasonic signals obtained from austenitic stainless steel specimens of different grain size, with and without defects. The influence of probe frequency and data length of a signal on EEMD decomposition is also investigated. For a particular sampling rate and probe frequency, the same range of IMFs can be used to reconstruct the ultrasonic signal, irrespective of the grain size in the range of 30-210 μm investigated in this study. This methodology is successfully employed for detection of defects in a 50mm thick coarse grain austenitic stainless steel specimens. Signal to noise ratio improvement of better than 15 dB is observed for the ultrasonic signal obtained from a 25 mm deep flat bottom hole in 200 μm grain size specimen. For ultrasonic signals obtained from defects at different depths, a minimum of 7 dB extra enhancement in SNR is achieved as compared to the sum of selected IMF approach. The application of minimisation algorithm with EEMD processed signal in the proposed methodology proves to be effective for adaptive signal reconstruction with improved signal to noise ratio. This methodology was further employed for successful imaging of defects in a B-scan.

摘要

本文提出了一种信号处理方法,用于有效重建粗晶粒高散射奥氏体不锈钢中的超声信号。该方法包括对超声信号进行集合经验模态分解(EEMD)处理,以及在 EEMD 得到的所选固有模态函数(IMF)上应用信号最小化算法。该方法应用于具有和不具有缺陷的不同晶粒尺寸的奥氏体不锈钢试样的超声信号。还研究了探头频率和信号数据长度对 EEMD 分解的影响。对于特定的采样率和探头频率,可以使用相同范围的 IMF 来重建超声信号,而与研究范围内的 30-210μm 的晶粒尺寸无关。该方法成功用于检测 50mm 厚粗晶粒奥氏体不锈钢试样中的缺陷。在 200μm 晶粒尺寸试样中,从 25mm 深平底孔获得的超声信号的信噪比提高了 15dB 以上。对于来自不同深度缺陷的超声信号,与所选 IMF 方法的总和相比,SNR 额外提高了至少 7dB。在提出的方法中,使用 EEMD 处理后的信号的最小化算法的应用被证明对自适应信号重建和提高信噪比是有效的。该方法进一步用于 B 扫描中缺陷的成功成像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验