Wu Yunfeng, Yang Shanshan, Zheng Fang, Cai Suxian, Lu Meng, Wu Meihong
School of Information Science and Technology, Xiamen University, 422 Si Ming South Road, Xiamen, Fujian, 361005, People's Republic of China.
Physiol Meas. 2014 Mar;35(3):429-39. doi: 10.1088/0967-3334/35/3/429. Epub 2014 Feb 12.
High-resolution knee joint vibroarthrographic (VAG) signals can help physicians accurately evaluate the pathological condition of a degenerative knee joint, in order to prevent unnecessary exploratory surgery. Artifact cancellation is vital to preserve the quality of VAG signals prior to further computer-aided analysis. This paper describes a novel method that effectively utilizes ensemble empirical mode decomposition (EEMD) and detrended fluctuation analysis (DFA) algorithms for the removal of baseline wander and white noise in VAG signal processing. The EEMD method first successively decomposes the raw VAG signal into a set of intrinsic mode functions (IMFs) with fast and low oscillations, until the monotonic baseline wander remains in the last residue. Then, the DFA algorithm is applied to compute the fractal scaling index parameter for each IMF, in order to identify the anti-correlation and the long-range correlation components. Next, the DFA algorithm can be used to identify the anti-correlated and the long-range correlated IMFs, which assists in reconstructing the artifact-reduced VAG signals. Our experimental results showed that the combination of EEMD and DFA algorithms was able to provide averaged signal-to-noise ratio (SNR) values of 20.52 dB (standard deviation: 1.14 dB) and 20.87 dB (standard deviation: 1.89 dB) for 45 normal signals in healthy subjects and 20 pathological signals in symptomatic patients, respectively. The combination of EEMD and DFA algorithms can ameliorate the quality of VAG signals with great SNR improvements over the raw signal, and the results were also superior to those achieved by wavelet matching pursuit decomposition and time-delay neural filter.
高分辨率膝关节振动关节造影(VAG)信号可帮助医生准确评估退行性膝关节的病理状况,以避免不必要的 exploratory 手术。在进行进一步的计算机辅助分析之前,消除伪影对于保持 VAG 信号的质量至关重要。本文描述了一种新颖的方法,该方法有效地利用总体经验模态分解(EEMD)和去趋势波动分析(DFA)算法来去除 VAG 信号处理中的基线漂移和白噪声。EEMD 方法首先将原始 VAG 信号依次分解为一组具有快速和低振荡的固有模态函数(IMF),直到单调的基线漂移保留在最后一个残差中。然后,应用 DFA 算法为每个 IMF 计算分形标度指数参数,以识别反相关和长程相关分量。接下来,DFA 算法可用于识别反相关和长程相关的 IMF,这有助于重建减少伪影的 VAG 信号。我们的实验结果表明,EEMD 和 DFA 算法的组合能够分别为健康受试者的 45 个正常信号和有症状患者的 20 个病理信号提供平均信噪比(SNR)值 20.52 dB(标准差:1.14 dB)和 20.87 dB(标准差:1.89 dB)。EEMD 和 DFA 算法的组合可以改善 VAG 信号的质量,与原始信号相比,SNR 有很大提高,并且结果也优于小波匹配追踪分解和时延神经滤波器所取得的结果。