Suppr超能文献

在250兆赫下对成像自旋捕获羟基自由基的灵敏度提高。

Improved sensitivity for imaging spin trapped hydroxyl radical at 250 MHz.

作者信息

Biller Joshua R, Tseitlin Mark, Mitchell Deborah G, Yu Zhelin, Buchanan Laura A, Elajaili Hanan, Rosen Gerald M, Kao Joseph P Y, Eaton Sandra S, Eaton Gareth R

机构信息

Department of Chemistry and Biochemistry, University of Denver, 2101 E. Wesley Ave., Denver, Colorado 80208 (USA).

出版信息

Chemphyschem. 2015 Feb 23;16(3):528-31. doi: 10.1002/cphc.201402835. Epub 2014 Dec 8.

Abstract

Radicals, including hydroxyl, superoxide, and nitric oxide, play key signaling roles in vivo. Reaction of these free radicals with a spin trap affords more stable paramagnetic nitroxides, but concentrations in vivo still are so low that detection by electron paramagnetic resonance (EPR) is challenging. Three innovative enabling technologies have been combined to substantially improve sensitivity for imaging spin-trapped radicals at 250 MHz. 1) Spin-trapped adducts of BMPO have lifetimes that are long enough to make imaging by EPR at 250 MHz feasible. 2) The signal-to-noise ratio of rapid-scan EPR is substantially higher than for conventional continuous-wave EPR. 3) An improved algorithm permits image reconstruction with a spectral dimension that encompasses the full 50 G spectrum of the BMPO-OH spin adduct without requiring the wide sweeps that would be needed for filtered backprojection. A 2D spectral-spatial image is shown for a phantom containing ca. 5 μM BMPO-OH.

摘要

包括羟基、超氧阴离子和一氧化氮在内的自由基在体内发挥着关键的信号传导作用。这些自由基与自旋捕获剂反应可生成更稳定的顺磁性氮氧化物,但体内浓度仍然很低,以至于通过电子顺磁共振(EPR)进行检测具有挑战性。三种创新的使能技术相结合,显著提高了在250 MHz下对自旋捕获自由基成像的灵敏度。1)BMPO的自旋捕获加合物具有足够长的寿命,使得在250 MHz下通过EPR成像成为可能。2)快速扫描EPR的信噪比显著高于传统的连续波EPR。3)一种改进的算法允许在不进行滤波反投影所需的宽扫描的情况下,重建包含BMPO-OH自旋加合物完整50 G谱的光谱维度的图像。展示了一个含有约5 μM BMPO-OH的模型的二维光谱空间图像。

相似文献

1
Improved sensitivity for imaging spin trapped hydroxyl radical at 250 MHz.
Chemphyschem. 2015 Feb 23;16(3):528-31. doi: 10.1002/cphc.201402835. Epub 2014 Dec 8.
2
Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals.
Biophys J. 2013 Jul 16;105(2):338-42. doi: 10.1016/j.bpj.2013.06.005.
8
In Vivo and In Situ Detection of Macromolecular Free Radicals Using Immuno-Spin Trapping and Molecular Magnetic Resonance Imaging.
Antioxid Redox Signal. 2018 May 20;28(15):1404-1415. doi: 10.1089/ars.2017.7390. Epub 2017 Dec 11.
10
Chiral spin traps. The spin trapping chemistry of 5-methyl-5-phenylpyrroline-N-oxide (MPPO).
J Magn Reson B. 1996 Jun;111(3):254-61. doi: 10.1006/jmrb.1996.0091.

引用本文的文献

1
Direct Measurement and Imaging of Redox Status with Electron Paramagnetic Resonance.
Antioxid Redox Signal. 2024 May;40(13-15):850-862. doi: 10.1089/ars.2022.0216. Epub 2023 May 4.
2
Rapid scan EPR: Automated digital resonator control for low-latency data acquisition.
J Magn Reson. 2022 Dec;345:107308. doi: 10.1016/j.jmr.2022.107308. Epub 2022 Oct 21.
4
Photo-Oxidation of Therapeutic Protein Formulations: From Radical Formation to Analytical Techniques.
Pharmaceutics. 2021 Dec 28;14(1):72. doi: 10.3390/pharmaceutics14010072.
5
Rapid Scan EPR Oxygen Imaging in Photoactivated Resin Used for Stereolithographic 3D Printing.
3D Print Addit Manuf. 2021 Dec 1;8(6):358-365. doi: 10.1089/3dp.2020.0170. Epub 2021 Dec 9.
6
EPR Everywhere.
Appl Magn Reson. 2021;52(8):1113-1139. doi: 10.1007/s00723-020-01304-z. Epub 2021 Jan 24.
7
Development of a fast-scan EPR imaging system for highly accelerated free radical imaging.
Magn Reson Med. 2019 Aug;82(2):842-853. doi: 10.1002/mrm.27759. Epub 2019 Apr 25.
9
Full cycle rapid scan EPR deconvolution algorithm.
J Magn Reson. 2017 Aug;281:272-278. doi: 10.1016/j.jmr.2017.06.008. Epub 2017 Jun 11.
10
Rapid-scan EPR imaging.
J Magn Reson. 2017 Jul;280:140-148. doi: 10.1016/j.jmr.2017.02.013.

本文引用的文献

1
Imaging of nitroxides at 250MHz using rapid-scan electron paramagnetic resonance.
J Magn Reson. 2014 May;242:162-8. doi: 10.1016/j.jmr.2014.02.015. Epub 2014 Mar 1.
2
Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals.
Biophys J. 2013 Jul 16;105(2):338-42. doi: 10.1016/j.bpj.2013.06.005.
3
Corrections for sinusoidal background and non-orthogonality of signal channels in sinusoidal rapid magnetic field scans.
J Magn Reson. 2012 Oct;223:80-4. doi: 10.1016/j.jmr.2012.07.023. Epub 2012 Aug 8.
4
X-band rapid-scan EPR of nitroxyl radicals.
J Magn Reson. 2012 Jan;214(1):221-6. doi: 10.1016/j.jmr.2011.11.007. Epub 2011 Nov 20.
5
Comparison of Continuous Wave, Spin Echo, and Rapid Scan EPR of Irradiated Fused Quartz.
Radiat Meas. 2011 Sep;46(9):993-996. doi: 10.1016/j.radmeas.2011.03.035.
6
Deconvolution of sinusoidal rapid EPR scans.
J Magn Reson. 2011 Feb;208(2):279-83. doi: 10.1016/j.jmr.2010.11.015. Epub 2010 Nov 26.
7
EasySpin, a comprehensive software package for spectral simulation and analysis in EPR.
J Magn Reson. 2006 Jan;178(1):42-55. doi: 10.1016/j.jmr.2005.08.013. Epub 2005 Sep 26.
8
Evaluation of spin trapping agents and trapping conditions for detection of cell-generated reactive oxygen species.
Arch Biochem Biophys. 2005 May 1;437(1):59-68. doi: 10.1016/j.abb.2005.02.028.
10
Esters of 5-carboxyl-5-methyl-1-pyrroline N-oxide: a family of spin traps for superoxide.
J Org Chem. 2003 Oct 3;68(20):7811-7. doi: 10.1021/jo0350413.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验