Girard Laurie D, Boissinot Karel, Peytavi Régis, Boissinot Maurice, Bergeron Michel G
Centre de recherche en infectiologie de l'Université Laval, Axe maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec, Québec City, Québec, Canada.
Analyst. 2015 Feb 7;140(3):912-21. doi: 10.1039/c4an01352b.
The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have high complexity and cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotide sequence-dependent segment and a unique "target sequence-independent" 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design of lab-on-chip microfluidic devices, while also reducing consumable costs. At term, it will allow the cost-effective automation of highly multiplexed assays for detection and identification of genetic targets.
分子诊断技术的组合越来越多地用于克服灵敏度、特异性或多重检测能力方面的限制,并提供高效的芯片实验室设备。聚合酶链反应(PCR)扩增和微阵列杂交这两种技术被相继使用,以利用前者的高灵敏度和特异性以及后者的高多重检测能力。这些方法通常在不同的缓冲液和反应室中进行。然而,这些精细的方法在试剂需求、液体储存以及集成到自动化设备中的反应室数量方面具有很高的复杂性和成本。此外,微阵列杂交的序列依赖性效率并非总是可预测的。在这项工作中,我们开发了一种结构化寡核苷酸探针的概念,该探针通过聚合酶外切核酸酶活性的切割而被激活。这项技术被称为SCISSOHR,即结构化切割诱导单链寡核苷酸杂交反应。SCISSOHR探针能够将靶序列索引到一个标签序列。SCISSOHR技术还允许在仅存在PCR缓冲液的单个容器中进行核酸扩增和微阵列杂交的组合。SCISSOHR技术使用一种在靶标存在时不可逆修饰的扩增探针,释放出用于微阵列杂交的单链DNA标签。每个标签由一个3核苷酸序列依赖性片段和一个独特的“与靶序列无关”的14核苷酸片段组成,允许以最小的交叉杂交实现最佳杂交。我们评估了五种PCR缓冲液支持微阵列杂交的性能,并与传统杂交缓冲液进行了比较。最后,作为概念验证,我们开发了一种用于扩增、检测和鉴定三个DNA靶标的多重检测方法。这项新技术将有助于芯片实验室微流控设备的设计,同时还能降低耗材成本。最终,它将实现用于检测和鉴定遗传靶标的高度多重检测的经济高效自动化。