Suppr超能文献

为改进微生物诊断中的微阵列探针设计,对探针-靶标杂交体的甲酰胺变性进行建模。

Modeling formamide denaturation of probe-target hybrids for improved microarray probe design in microbial diagnostics.

机构信息

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America.

出版信息

PLoS One. 2012;7(8):e43862. doi: 10.1371/journal.pone.0043862. Epub 2012 Aug 27.

Abstract

Application of high-density microarrays to the diagnostic analysis of microbial communities is challenged by the optimization of oligonucleotide probe sensitivity and specificity, as it is generally unfeasible to experimentally test thousands of probes. This study investigated the adjustment of hybridization stringency using formamide with the idea that sensitivity and specificity can be optimized during probe design if the hybridization efficiency of oligonucleotides with target and non-target molecules can be predicted as a function of formamide concentration. Sigmoidal denaturation profiles were obtained using fluorescently labeled and fragmented 16S rRNA gene amplicon of Escherichia coli as the target with increasing concentrations of formamide in the hybridization buffer. A linear free energy model (LFEM) was developed and microarray-specific nearest neighbor rules were derived. The model simulated formamide melting with a denaturant m-value that increased hybridization free energy (ΔG°) by 0.173 kcal/mol per percent of formamide added (v/v). Using the LFEM and specific probe sets, free energy rules were systematically established to predict the stability of single and double mismatches, including bulged and tandem mismatches. The absolute error in predicting the position of experimental denaturation profiles was less than 5% formamide for more than 90 percent of probes, enabling a practical level of accuracy in probe design. The potential of the modeling approach for probe design and optimization is demonstrated using a dataset including the 16S rRNA gene of Rhodobacter sphaeroides as an additional target molecule. The LFEM and thermodynamic databases were incorporated into a computational tool (ProbeMelt) that is freely available at http://DECIPHER.cee.wisc.edu.

摘要

高密度微阵列在微生物群落的诊断分析中的应用受到优化寡核苷酸探针灵敏度和特异性的挑战,因为通常不可能对数千个探针进行实验测试。本研究通过使用甲酰胺来调整杂交的严格性,其想法是如果可以预测寡核苷酸与目标和非目标分子的杂交效率作为甲酰胺浓度的函数,则可以在探针设计过程中优化灵敏度和特异性。使用荧光标记的和碎片化的大肠杆菌 16S rRNA 基因扩增子作为目标,在杂交缓冲液中加入不同浓度的甲酰胺,得到了荧光标记的和碎片化的大肠杆菌 16S rRNA 基因扩增子的 S 形变性曲线。开发了一种线性自由能模型(LFEM),并推导出了微阵列特有的最近邻规则。该模型模拟了甲酰胺的融解,使杂交自由能(ΔG°)增加了 0.173 kcal/mol/每加入的甲酰胺百分比(v/v)。使用 LFEM 和特定的探针集,可以系统地建立自由能规则来预测单碱基和双碱基错配的稳定性,包括膨出和串联错配。对于超过 90%的探针,预测实验变性曲线位置的绝对误差小于 5%甲酰胺,这使得探针设计具有实际的准确性。使用包括 Rhodobacter sphaeroides 的 16S rRNA 基因作为附加目标分子的数据集,演示了该建模方法在探针设计和优化中的潜力。LFEM 和热力学数据库被整合到一个计算工具(ProbeMelt)中,该工具可在 http://DECIPHER.cee.wisc.edu 免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39fd/3428302/33f19674bef1/pone.0043862.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验