Suppr超能文献

使用单锥形玻璃纳米孔对小单层磷脂囊泡转位进行计数及动力学研究。

Counting and dynamic studies of the small unilamellar phospholipid vesicle translocation with single conical glass nanopores.

作者信息

Chen Lizhen, He Haili, Jin Yongdong

机构信息

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin, People's Republic of China.

出版信息

Anal Chem. 2015 Jan 6;87(1):522-9. doi: 10.1021/ac5029243. Epub 2014 Dec 19.

Abstract

Phospholipid vesicles are ubiquitous cellular organelles that perform vital functions including materials transport and information transmission and have found promising biomedical applications. Although the transmembrane translocation (via nanopores) of phospholipid vesicles, especially small unilamellar phospholipid vesicles (SUVs), is recognized to be very important for these processes and applications, the details and dynamics remain not very clear. Herein, we use single conical glass nanopores as a model platform to systematically investigate the translocation dynamics of SUVs (∼50-60 nm in diameter) through small nanopores with orifice diameters ranging from ∼14 to 72 nm. Dynamic translocation of individual SUVs one by one through the nanopores was clearly observed and was analyzed by the occurrence of periodic oscillation in ionic current blockage signal under a negatively applied voltage. Translocation behaviors of the SUVs, in terms of magnitude and duration of ionic current blockage signal, varied and can be modulated by changing nanopore size, solution pH, vesicle concentration, applied voltage, and inner surface charge properties of the nanopores. The translocation rate of the SUVs through an ∼72 nm nanopore is typically on a time scale of a few seconds (per SUV translocation event) and found nonlinearly proportional to the concentration of the SUVs. Moreover, the electrophoretic force has been verified as a main force to drive the SUVs through the nanopore since there is a nearly linear relationship between the current blockage frequency of SUVs translocation and the applied bias potentials ranging from -0.6 to -1 V. The findings provide fundamental insights into the translocation and interactions of SUVs with nanopores, and the reported nanopore platform may find potential useful bioapplications in single-cell and single-vesicle studies.

摘要

磷脂囊泡是普遍存在的细胞器,执行包括物质运输和信息传递在内的重要功能,并已在生物医学领域展现出广阔的应用前景。尽管磷脂囊泡(尤其是小单层磷脂囊泡,SUVs)通过纳米孔的跨膜转运对于这些过程和应用非常重要,但其细节和动力学仍不太清楚。在此,我们使用单个锥形玻璃纳米孔作为模型平台,系统地研究直径约为50 - 60 nm的SUVs通过孔径范围为14至72 nm的小纳米孔的转运动力学。清晰观察到单个SUVs逐个通过纳米孔的动态转运过程,并通过在负向施加电压下离子电流阻断信号中出现的周期性振荡进行分析。SUVs的转运行为,就离子电流阻断信号的幅度和持续时间而言,各不相同,并且可以通过改变纳米孔尺寸、溶液pH值、囊泡浓度、施加电压以及纳米孔的内表面电荷性质来调节。SUVs通过约72 nm纳米孔的转运速率通常在几秒的时间尺度上(每次SUV转运事件),并且发现与SUVs的浓度呈非线性比例关系。此外,由于SUVs转运的电流阻断频率与 - 0.6至 - 1 V范围内的施加偏置电位之间存在近乎线性的关系,电泳力已被证实是驱动SUVs通过纳米孔的主要力量。这些发现为SUVs与纳米孔的转运和相互作用提供了基本见解,并且所报道的纳米孔平台可能在单细胞和单囊泡研究中找到潜在的有用生物应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验