Suppr超能文献

锥形纳米孔中的纳米粒子输运。

Nanoparticle transport in conical-shaped nanopores.

机构信息

Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, USA.

出版信息

Anal Chem. 2011 May 15;83(10):3840-7. doi: 10.1021/ac200312n. Epub 2011 Apr 25.

Abstract

This report presents a fundamental study of nanoparticle transport phenomena in conical-shaped pores contained within glass membranes. The electrophoretic translocation of charged polystyrene (PS) nanoparticles (80- and 160-nm-radius) was investigated using the Coulter counter principle (or "resistive-pulse" method) in which the time-dependent nanopore current is recorded as the nanoparticle is driven across the membrane. Particle translocation through the conical-shaped nanopore results in a direction-dependent and asymmetric triangular-shaped resistive pulse. Because the sensing zone of conical-shaped nanopores is localized at the orifice, the translocation of nanoparticles through this zone is very rapid, resulting in pulse widths of ~200 μs for the nanopores used in this study. A linear dependence between translocation rate and nanoparticle concentration was observed from 10(7) to 10(11) particles/mL for both 80- and 160-nm-radius particles, and the magnitude of the resistive pulse scaled approximately in proportion to the particle volume. A finite-element simulation based on continuum theory to compute ion fluxes was combined with a dynamic electric force-based nanoparticle trajectory calculation to compute the position- and time-dependent nanoparticle velocity as the nanoparticle translocates through the conical-shaped nanopore. The computational results were used to compute the resistive pulse current-time response for conical-shaped pores, allowing comparison between experimental and simulated pulse heights and translocation times. The simulation and experimental results indicate that nanoparticle size can be differentiated based on pulse height, and to a lesser extent based on translocation time.

摘要

本报告对玻璃膜内锥形孔中纳米颗粒的输运现象进行了基础研究。采用库尔特计数器原理(或“电阻脉冲”方法),通过记录纳米颗粒在跨膜驱动过程中随时间变化的纳米孔电流,研究了带电聚苯乙烯(PS)纳米颗粒(80nm 和 160nm 半径)的电泳迁移。颗粒在锥形纳米孔中的迁移导致了方向相关和非对称的三角形电阻脉冲。由于锥形纳米孔的传感区位于孔口,因此纳米颗粒通过该区域的迁移非常迅速,导致本研究中使用的纳米孔的脉冲宽度约为 200μs。对于 80nm 和 160nm 半径的颗粒,在 10^7 到 10^11 个颗粒/mL 的浓度范围内,观察到迁移率与颗粒浓度之间呈线性关系,电阻脉冲的幅度与颗粒体积大致成正比。基于连续体理论计算离子通量的有限元模拟与基于动态电场力的纳米颗粒轨迹计算相结合,计算了纳米颗粒在锥形纳米孔中位置和时间相关的速度,作为纳米颗粒穿过锥形纳米孔的结果。将计算结果用于计算锥形孔的电阻脉冲电流-时间响应,以比较实验和模拟的脉冲高度和迁移时间。模拟和实验结果表明,可以根据脉冲高度,在较小程度上根据迁移时间来区分纳米颗粒的大小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验