Suppr超能文献

活化应变分析揭示了杂芳族氮杂二烯反电子需求狄尔斯-阿尔德环加成反应中快速反应性的意外来源。

Activation-strain analysis reveals unexpected origin of fast reactivity in heteroaromatic azadiene inverse-electron-demand diels-alder cycloadditions.

作者信息

Talbot Austin, Devarajan Deepa, Gustafson Samantha J, Fernández Israel, Bickelhaupt F Matthias, Ess Daniel H

机构信息

†Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States.

‡Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, E-28040 Madrid, Spain.

出版信息

J Org Chem. 2015 Jan 2;80(1):548-58. doi: 10.1021/jo5025514. Epub 2014 Dec 4.

Abstract

Heteroaromatic azadienes, especially 1,2,4,5-tetrazines, are extremely reactive partners with alkenes in inverse-electron-demand Diels-Alder reactions. Azadiene cycloaddition reactions are used to construct heterocycles in synthesis and are popular as bioorthogonal reactions. The origin of fast azadiene cycloaddition reactivity is classically attributed to the inverse frontier molecular orbital (FMO) interaction between the azadiene LUMO and alkene HOMO. Here, we use a combination of ab initio, density functional theory, and activation-strain model calculations to analyze physical interactions in heteroaromatic azadiene-alkene cycloaddition transition states. We find that FMO interactions do not control reactivity because, while the inverse FMO interaction becomes more stabilizing, there is a decrease in the forward FMO interaction that is offsetting. Rather, fast cycloadditions are due to a decrease in closed-shell Pauli repulsion between cycloaddition partners. The kinetic-thermodynamic relationship found for these inverse-electron-demand cycloadditions is also due to the trend in closed-shell repulsion in the cycloadducts. Cycloaddition regioselectivity, however, is the result of differences in occupied-unoccupied orbital interactions due to orbital overlap. These results provide a new predictive model and correct physical basis for heteroaromatic azadiene reactivity and regioselectivity with alkene dieneophiles.

摘要

杂芳族氮杂二烯,尤其是1,2,4,5 - 四嗪,在逆电子需求的狄尔斯 - 阿尔德反应中是与烯烃反应活性极高的反应伙伴。氮杂二烯环加成反应在合成中用于构建杂环,并且作为生物正交反应很受欢迎。快速的氮杂二烯环加成反应活性的起源传统上归因于氮杂二烯最低未占分子轨道(LUMO)与烯烃最高已占分子轨道(HOMO)之间的反向前沿分子轨道(FMO)相互作用。在此,我们结合从头算、密度泛函理论和活化应变模型计算来分析杂芳族氮杂二烯 - 烯烃环加成过渡态中的物理相互作用。我们发现FMO相互作用并不控制反应活性,因为虽然反向FMO相互作用变得更稳定,但正向FMO相互作用却有所降低,二者相互抵消。相反,快速环加成是由于环加成反应伙伴之间闭壳层泡利排斥的降低。这些逆电子需求环加成反应中发现的动力学 - 热力学关系也是由于环加成产物中闭壳层排斥的趋势。然而,环加成区域选择性是由于轨道重叠导致的占据 - 未占据轨道相互作用差异的结果。这些结果为杂芳族氮杂二烯与烯烃亲双烯体反应的反应活性和区域选择性提供了一个新的预测模型和正确的物理基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验