Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.
Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
Chemistry. 2020 Sep 4;26(50):11529-11539. doi: 10.1002/chem.202000857. Epub 2020 Aug 7.
We have quantum chemically studied the reactivity, site-, and regioselectivity of the 1,3-dipolar cycloaddition between methyl azide and various allenes, including the archetypal allene propadiene, heteroallenes, and cyclic allenes, by using density functional theory (DFT). The 1,3-dipolar cycloaddition reactivity of linear (hetero)allenes decreases as the number of heteroatoms in the allene increases, and formation of the 1,5-adduct is, in all cases, favored over the 1,4-adduct. Both effects find their origin in the strength of the primary orbital interactions. The cycloaddition reactivity of cyclic allenes was also investigated, and the increased predistortion of allenes, that results upon cyclization, leads to systematically lower activation barriers not due to the expected variations in the strain energy, but instead from the differences in the interaction energy. The geometric predistortion of cyclic allenes enhances the reactivity compared to linear allenes through a unique mechanism that involves a smaller HOMO-LUMO gap, which manifests as more stabilizing orbital interactions.
我们用量子化学方法研究了甲基叠氮化物与各种丙二烯,包括典型的丙二烯丙二烯、杂丙二烯和环状丙二烯之间的 1,3-偶极环加成的反应性、位置选择性和区域选择性,使用了密度泛函理论(DFT)。线性(杂)丙二烯的 1,3-偶极环加成反应性随着丙二烯中杂原子数量的增加而降低,并且在所有情况下,形成 1,5-加成都优于 1,4-加成都。这两种效应都源于主要轨道相互作用的强度。我们还研究了环状丙二烯的环加成反应性,环化导致丙二烯的预变形增加,这会导致系统地降低活化能垒,这不是由于预期的应变能变化,而是由于相互作用能的差异。环状丙二烯的几何预变形通过一种独特的机制增强了与线性丙二烯的反应性,该机制涉及较小的 HOMO-LUMO 间隙,这表现为更稳定的轨道相互作用。