Fong Duncan K H, Kim Sunghoon, Chen Zhe, DeSarbo Wayne S
Smeal College of Business, The Pennsylvania State University, University Park, PA, 16802 , USA.
W.P. Carey School of Business, Arizona State University, Tempe, AZ, 85258, USA.
Psychometrika. 2016 Mar;81(1):161-83. doi: 10.1007/s11336-014-9437-6. Epub 2014 Dec 10.
A new Bayesian multinomial probit model is proposed for the analysis of panel choice data. Using a parameter expansion technique, we are able to devise a Markov Chain Monte Carlo algorithm to compute our Bayesian estimates efficiently. We also show that the proposed procedure enables the estimation of individual level coefficients for the single-period multinomial probit model even when the available prior information is vague. We apply our new procedure to consumer purchase data and reanalyze a well-known scanner panel dataset that reveals new substantive insights. In addition, we delineate a number of advantageous features of our proposed procedure over several benchmark models. Finally, through a simulation analysis employing a fractional factorial design, we demonstrate that the results from our proposed model are quite robust with respect to differing factors across various conditions.
本文提出了一种新的贝叶斯多项概率单位模型,用于分析面板选择数据。通过参数扩展技术,我们能够设计出一种马尔可夫链蒙特卡罗算法,以有效地计算贝叶斯估计值。我们还表明,即使可用的先验信息模糊,所提出的方法也能够估计单期多项概率单位模型的个体水平系数。我们将新方法应用于消费者购买数据,并重新分析了一个著名的扫描仪面板数据集,从中发现了新的实质性见解。此外,我们还阐述了所提出方法相对于几个基准模型的一些优势特征。最后,通过使用分数析因设计的模拟分析,我们证明了所提出模型的结果在不同条件下对不同因素具有很强的稳健性。