Leibniz Institute for Science and Mathematics Education.
Psychol Methods. 2018 Sep;23(3):570-593. doi: 10.1037/met0000155. Epub 2017 Nov 27.
The STARTS (Stable Trait, AutoRegressive Trait, and State) model decomposes individual differences in psychological measurement across time into 3 sources of variation: a time-invariant stable component, a time-varying autoregressive component, and an occasion-specific state component. Previous simulation research and applications of the STARTS model have shown that serious estimation problems such as nonconvergence or inadmissible estimates (e.g., negative variances) frequently occur for STARTS model parameters. This article introduces a general approach to estimating the parameters of the STARTS model by employing Bayesian methods that use Markov Chain Monte Carlo (MCMC) techniques. With the specification of appropriate prior distributions, the Bayesian approach offers the advantage that the model estimates will be within the admissible range, and it should be possible to avoid estimation problems. Furthermore, we show how Bayesian methods can be used to stabilize STARTS model estimates by specifying weakly informative prior distributions for the model parameters. In a simulation study, the statistical properties (bias, root mean square error, coverage rate) of the parameter estimates obtained from the Bayesian approach are compared with those of the maximum-likelihood approach. A data example is presented to illustrate how the Bayesian approach can be used to estimate the STARTS model. Finally, further extensions of the STARTS model are discussed, and suggestions for applied research are made. (PsycINFO Database Record
STARTS(稳定特质、自回归特质和状态)模型将个体在心理测量上随时间的差异分解为 3 个变异来源:一个时间不变的稳定成分、一个随时间变化的自回归成分和一个特定场合的状态成分。STARTS 模型的先前模拟研究和应用表明,严重的估计问题,如不收敛或不可接受的估计(例如,负方差),经常发生在 STARTS 模型参数上。本文介绍了一种通过使用马尔可夫链蒙特卡罗(MCMC)技术的贝叶斯方法来估计 STARTS 模型参数的一般方法。通过指定适当的先验分布,贝叶斯方法的优势在于模型估计将在可接受的范围内,并且应该有可能避免估计问题。此外,我们展示了如何通过为模型参数指定弱信息先验分布来使用贝叶斯方法来稳定 STARTS 模型估计。在一项模拟研究中,比较了贝叶斯方法和最大似然方法得到的参数估计的统计性质(偏差、均方根误差、覆盖率)。提供了一个数据示例来说明如何使用贝叶斯方法来估计 STARTS 模型。最后,讨论了 STARTS 模型的进一步扩展,并为应用研究提出了建议。