Suppr超能文献

基于互相关的阈值信号检测器的噪声-收益禁带定理

Noise-benefit forbidden-interval theorems for threshold signal detectors based on cross correlations.

作者信息

Mitaim Sanya, Kosko Bart

机构信息

Department of Electrical and Computer Engineering, Faculty of Engineering Thammasat University, Pathumthani 12120, Thailand.

Department of Electrical Engineering, Signal and Image Processing Institute, University of Southern California, Los Angeles, California 90089-2564, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Nov;90(5-1):052124. doi: 10.1103/PhysRevE.90.052124. Epub 2014 Nov 14.

Abstract

We show that the main forbidden interval theorems of stochastic resonance hold for a correlation performance measure. Earlier theorems held only for performance measures based on mutual information or the probability of error detection. Forbidden interval theorems ensure that a threshold signal detector benefits from deliberately added noise if the average noise does not lie in an interval that depends on the threshold value. We first show that this result holds for correlation for all finite-variance noise and for all forms of infinite-variance stable noise. A second forbidden-interval theorem gives necessary and sufficient conditions for a local noise benefit in a bipolar signal system when the noise comes from a location-scale family. A third theorem gives a general condition for a local noise benefit for arbitrary signals with finite second moments and for location-scale noise. This result also extends forbidden intervals to forbidden bands of parameters. A fourth theorem gives necessary and sufficient conditions for a local noise benefit when both the independent signal and noise are normal. A final theorem derives necessary and sufficient conditions for forbidden bands when using arrays of threshold detectors for arbitrary signals and location-scale noise.

摘要

我们表明,随机共振的主要禁带定理适用于相关性能度量。早期的定理仅适用于基于互信息或错误检测概率的性能度量。禁带定理确保,如果平均噪声不在取决于阈值的区间内,阈值信号检测器会从故意添加的噪声中受益。我们首先表明,对于所有有限方差噪声和所有形式的无限方差稳定噪声,该结果对于相关性均成立。第二个禁带定理给出了噪声来自位置 - 尺度族时,双极信号系统中局部噪声受益的充要条件。第三个定理给出了具有有限二阶矩的任意信号和位置 - 尺度噪声时局部噪声受益的一般条件。该结果还将禁带扩展到参数的禁带。第四个定理给出了独立信号和噪声均为正态时局部噪声受益的充要条件。最后一个定理推导了使用阈值检测器阵列处理任意信号和位置 - 尺度噪声时禁带的充要条件。

相似文献

1
Noise-benefit forbidden-interval theorems for threshold signal detectors based on cross correlations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Nov;90(5-1):052124. doi: 10.1103/PhysRevE.90.052124. Epub 2014 Nov 14.
2
Error-probability noise benefits in threshold neural signal detection.
Neural Netw. 2009 Jul-Aug;22(5-6):697-706. doi: 10.1016/j.neunet.2009.06.044. Epub 2009 Jul 3.
3
Stochastic resonance in noisy spiking retinal and sensory neuron models.
Neural Netw. 2005 Jun-Jul;18(5-6):467-78. doi: 10.1016/j.neunet.2005.06.031.
4
Stochastic resonance in noisy threshold neurons.
Neural Netw. 2003 Jun-Jul;16(5-6):755-61. doi: 10.1016/S0893-6080(03)00128-X.
5
Robust stochastic resonance for simple threshold neurons.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Sep;70(3 Pt 1):031911. doi: 10.1103/PhysRevE.70.031911. Epub 2004 Sep 27.
6
Extending stochastic resonance for neuron models to general Lévy noise.
IEEE Trans Neural Netw. 2009 Dec;20(12):1993-5. doi: 10.1109/TNN.2009.2033183. Epub 2009 Oct 9.
8
Robust stochastic resonance: signal detection and adaptation in impulsive noise.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Nov;64(5 Pt 1):051110. doi: 10.1103/PhysRevE.64.051110. Epub 2001 Oct 22.
9
Optimal stimulus and noise distributions for information transmission via suprathreshold stochastic resonance.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jun;75(6 Pt 1):061105. doi: 10.1103/PhysRevE.75.061105. Epub 2007 Jun 6.
10
Aperiodic stochastic resonance in neural information processing with Gaussian colored noise.
Cogn Neurodyn. 2021 Jun;15(3):517-532. doi: 10.1007/s11571-020-09632-3. Epub 2020 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验